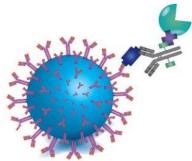

Antonio Bertolotto: disclosures

Type of affiliation or financial support

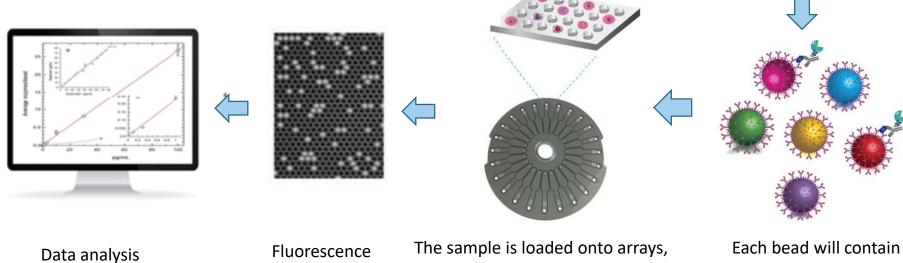
Name of organization

Contribution in research	2017: Almirall, Bayer, Biogen, Genzyme, Merck, Novartis, TEVA, FISM 2018: Almiral, Biogen, Novartis, TEVA, FISM, 2019: Almiral, Biogen, Genzyme, Novartis, Merck, Sanofi, FISM
Consultancy activity	2017: Roche, Sanofi 2018: Biogen, Sanofi 2019: Biogen, Novartis, Roche, Sanofi Genzyme
Activity of lecturer	2017: Biogen, Novartis, Sanofi 2018: Biogen, Mylan, Novartis, Santhera, Sanofi, TEVA 2019: Biogen, Mylan, Novartis, Roche, Sanofi Genzyme, Santhera
Possession of shares	/

THE SIMOA TECHNOLOGY Sensitivity



SIMOA BEAD ASSAYS



500000 paramagnetic beads coupled with capture antibodies specific for each target are added to the sample

Formation of an immunocomplex consisting of the bead, bound protein, and detection antibody.

imaging


consisting of 250,000 microwells,

each large enough to hold one bead

bound proteins, or not

<u>Single Molecule Array</u>

Array

Simoa utilizza 24 arrays (contenitori) posizionati in cerchio in ciascuno dei quali ci sono 216 000 piccoli "pozzetti" che possono contenere sono 1 elemento da analizzare (single molecule)

24 x 216 000

Applications of SIMOA technology

- Analysis of biomarkers previously difficult or impossible to be measured
- Different biological substrates: serum, plasma, cerebrospinal fluid, cellular extracts.
- Fields of application:

• Hundreds of international pubblications are available, showing the great interest towards this technology and its applications.

> 50 pubblicazioni nel 2019 su PubMed con la ricerca «SIMOA»

ONCOLOGY

NEUROLOGY

CARDIOLOGY

INFLAMMATORY

INFECTIOUS DISEASE

Advantage Assays - Human

Analyte	LoD (pg/mL)	LoQ (pg/mL)	Dynamic Range (pg/mL)	Median Endogenous (pg/mL)	Sample Volume*	Sample Type**	Catalog Number
Αβ40	0.522	1.23	0-800	65.97	32.5 µl.	C, E	101672
Α _β 42	0.044	0.137	0-400	4.7	32.5 µL	C, E	101664
C-Peptide	0.013	0.021	0-400	1559	25 µL	E, S	100199
Eotaxin / CXCL11	0.1	0.18	0-960	75.6	13 µL	E, S	101212
G-CSF	0.095	0.095	0-400	7.12	25 µL	E, S	101235
GM-CSF	0.0019	0.0103	0-120	0.0865	33 µL.	E, S	102329
IFNα	0.0025	0.0047	0-150	0.0036	73 µL	E, S	100860
IFNy	0.0104	0.0764	0-400	0.333	32.5 µl.	E, S	100200
IL-1p	0.016	0.083	0-240	0.058	100 µL	E, S	101605
IL-2	0.011	0.041	0-120	0.086	49.5 µL	E, S	101635
IL-4	0.0046	0.039	0-200	0.024	65 µL	E, S	100196
IL-5	0.004	0.0165	0-12	0.22	76 µL	E, S	102860
IL-6	0.0055	0.01	0-120	1.73	32.5 µl.	E, S	101622
IL-7	0.009	0.103	0-600	28.0	25 µL	E, S	103277
IL-8	0.056	0.0921	0-1,200	5.31	25 µl.	E, S	100198
IL-10	0.0038	0.021	0-120	0.94	32.5 µl.	E, S	101643
IL-12p70	0.0048	0.017	0-40	1.95	25 µL	E, S	100988
IL-13	0.002	0.005	0-30	0.039	65 µL	E, S	102732
IL-15	0.003	0.0062	0-40	3.23	25 µl.	E, S	100794
IL-17A	0.0042	0.021	0-120	0.124	32.5 µl.	E, S	101599
IP-10	0.052	0.177	0-800	105	25 µL	E, S	101132
MCP-1	N/A	0.153	0-800	85.3	25 µl.	E, S	101154
NF-light [®]	0.038	0.174	0-2,000	5.33	46 µL	C, E, S	102258
HIV p24	0.0027	0.01	N/A	N/A	154 µL	E, S	102215
PSA	0.015	0.024	0-400	1.81	32.5 µl.	E, S	101478
Tau	0.019	0.061	0-360	1.65	45.5 µL	C, E, S	101552
P-Tau 231	0.621	1.83	0-1,200	20.8	38 µL	С	102292
TDP-43	2.48	8.23	0-8,000	130	25 µL	C, E, S	103293
TNF-a	0.016	0.034	0-400	1.94	32.5 µL	E, S	101580
TRAIL	0.0083	0.0177	0-400	23.1	25 µl.	E, S	100906
Troponin-I	0.013	0.079	0-1,200	0.646	49.5 µL	E, S	101588

Discovery	Assays -	Human
-----------	----------	-------

Analyto	LoD (pg/mL)	LoQ (pg/mL)	Dynamic Range (Dg/mL)	Median Endogenous (pg/mL)	Sample Volume [†]	Sample Type ^{rr}	Catalog Number
a-Synuclein	0.955	4.12	0-10,000	4,145	19 µL	C, E, S	102233
BDNF	0.011	0.034	0-64,000	11,305	33 µl.	C, E, S	102039
CA 19-9	0.023 U/mL	0.41 U/mL	0-240 U/mL	0.83 U/mL	206 µl.	E, S	102543
CA-125	0.003 U/mL	0.010 U/mL	0-200 U/mL	1.62 U/mL	13 65 µL	E, S	102136
Cathepsin S	0.7	1.95	0-200	6,566	10 µL	E, S	102064
CEA	0.486	2.33	O-B5 ng/mL	1511.5	10 µL	E, S	102556
C-MET	0.036	0.244	0-800	58,012	10 µL	E, L, S	102073
CRP	0.048	0.585	0-48	19	10 µL	E, S	102583
CXCLB	0.048	0.07	0-800	22.63	33 µL	E, S	102635
GFAP*	0.211	0.685	0-4,000	88	46 µl.	C, E, S	102336
HE4 / WFDC2	0.135	0.977	0-4,000	104	55 µl.	E, S	103050
IL-1a	0.004	0.01	0-60	0.0293	65 µL	E, S	101968
IL-3	0.226	0.685	0-2000	0.279	46 µL	E, S	102462
IL-12p40/IL-23	0.02	0.086	0-1,000	51.3	33 µL	E, S	101871
IL-17C	0.065	0.205	0-1200	1.65	33 µL	E, S	102570
IL-18	0.004	0.012	0-2250	200.1	10 µl.	C, E, S	102700
IL-22 (Total)	0.0054	0.0103	0-120	7.16	55 µl.	E, S	103071
IL-23	0.132	0.685	0-2,000	0.31	90 µL	E,S	102184
IL-28A	0.022	0.069	0-200	0.303	65 µL	E,S	101419
IL-33	0.32	0.585	0-2,000	5.45	65 µL	E, S	103093
IL-368	0.01	0.205	0-600	0.426	33 µL	E, S	101808
Leptin	2.46	4.94	0-60,000	6,083	2 µL.	E, S	101855
LIF	0.015	0.086	0-520	0.412	33 µl.	E, S	10239
MCP-3	0.124	0.309	0-450	0.445	75 µL	E, S	10238
MIP-1p	0.034	0.137	0-800	66.7	46 µL	E, S	10259
MMP-9	0.581	4.88	0-5,000 ng/ml	555	1µL	C, E, S	10249
pNF-heavy	0.663	2.88	0-8,400	30.82	13 µl.	C, E, S	10266
NSE	1.296	9.88	0-120	7,845	2 µL	C, E, S	102475
NT-proBNP	0.043	0.206	0-500	71	22 µl.	E, S	102713
PD-1	0.247	0.879	0-7200	73	58 µL	E, S	10292
PD-L1	0.055	0.617	0-4,300	33.79	10 µl.	E, S	10264
PIGF	0.064	0.3	0-960	3.82	38 µl.	E, S	102318
TGFa	0.031	0.207	0-900	3.34	65 µl.	E, S	101863
TGFp	0.137	0.514	0-24,000	34,836	8.5 µL	E, S	101984
TNFβ	0.052	0.15	0-2,400	7.168	55 µl.	E, S	10209
UCH-L1*	1.05	3.43	0-20,000	9.51	46 µL	C, E, S	10234
VEGF	0.041	0.137	0-800	3.49	33 µl.	E, S	10279

Oncology

PD1 and PD-L1 dosage to distinguish PD-1 inhibitor nonresponders as early as after one dose after therapy and applications in characterizing PD-1 inhibitor resistance

> C-MET and AREG dosage in advanced rectal cancer

Biomarkers for Immunotherapy of Cancer pp 399-412 | Cite as

Single-Molecule Arrays for Ultrasensitive Detection of Blood-Based Biomarkers for Immunotherapy

Authors

Authors and affiliations

Limor Cohen, Alissa Keegan 🖂 , David R. Walt

Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response

Luisa Matos do Canto, Sarah Santiloni Cury, Mateus Camargo Barros-Filho, Bruna Elisa Catin Kupper, Maria Dirlei Ferreira de Souza Begnami, Cristovam Scapulatempo-Neto, Robson Francisco Carvalho, Fabio Albuquerque Marchi, Dorte Aalund Olsen, Jonna Skov Madsen, Birgitte Mayland Havelund, Samuel Aguiar Jr. & Silvia Regina Rogatto 🖂

Cardiology

Circulating cardiac Troponin 1. Correlation with age and sex, implications for risk stratification purposes

Abstract 19167: Ultra-high Sensitive Cardiac Troponin I Baseline Levels are Affected by Age and Sex

Mitra Mastali, Qin Fu, Kimia Sobhani, Noel Bairey Merz, and Jennifer Van Eyk

Originally published 9 Jun 2018 | Circulation. 2017;136:A19167

RBM3, new candidate as a biomarker for therapeutic hypothermia and a possible new therapeutic target for organ protection A Prospective Clinical Trial Measuring the Effects of Cardiopulmonary Bypass Under Mild Hypothermia on the Inflammatory Response and Regulation of Cold-Shock Protein RNA-Binding Motif 3

Lisa-Maria Rosenthal 🖂 Giang Tong, Sylvia Wowro, Christoph Walker, Constanze Pfitzer, Wolfgang Böttcher, Oliver Miera, Felix Berger, and Katharina Rose Luise Schmitt

Immunology and inflammation

IFN-alfa. Evaluation of treatment efficacy in LES patients

Control of TLR7-mediated type I IFN signaling in pDCs through CXCR4 engagement—A new target for lupus treatment

Nikaïa Smith^{1,2,3,4}*, Mathieu P. Rodero^{1,2,3}, Nassima Bekaddour^{1,2,3}, Vincent Bondet^{5,6},

IFN-alfa. High levels correlates with a higher risk of relapse Ultrasensitive serum interferon-**a** quantification during SLE remission identifies patients at risk for relapse

Alexis Mathian¹, Suzanne Mouries-Martin², Karim Dorgham³, Hervé Devilliers⁴, Hans Yssel³, Laura Garrido Castillo³, Fleur Coh Aubart¹, Julien Haroche¹, Miguel Hié¹, Marc Pineton de Chambrun¹, Makoto Miyara³, Micheline Pha¹, Flore Rozenberg⁵, Guy Gorochov³, Zahir Amoura¹

Infectious Disease assays

IL-6, IL-8, IL-18, and VEGF. A blood-based host response panel can help to differentiate active tubercolosis from other causes of persistent cough in patients with and without HIV infection.

A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough

Rushdy Ahmad^{1,*}, Liangxia Xie^{2,3,4}, Margaret Pyle⁵, Marta F. Suarez⁶, Tobias Broger⁷, Dan Steinberg⁸, Shaali M. Ame⁹, Maril... + See all authors and affiliations

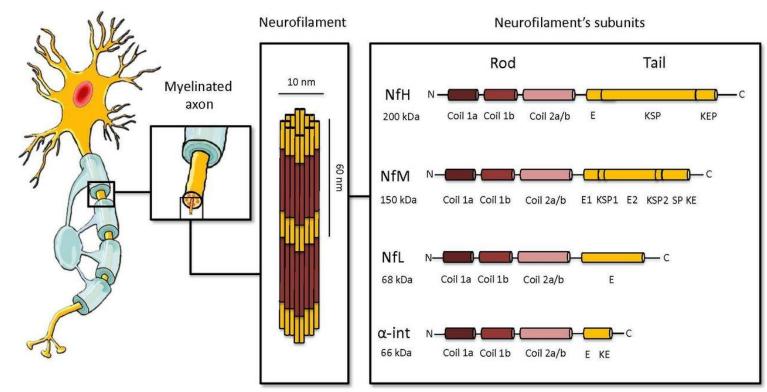
Botulinum neurotoxin serotype A1. Quantitative analysis of **BoNT/A1**, also at low amount in seum samples Rapid and ultrasensitive detection of botulinum neurotoxin serotype A1 in human serum and urine using single-molecule array method

Authors

Authors and affiliations

Trinh L. Dinh, Kevin C. Ngan, Charles B. Shoemaker, David R. Walt 🖂

Neurology

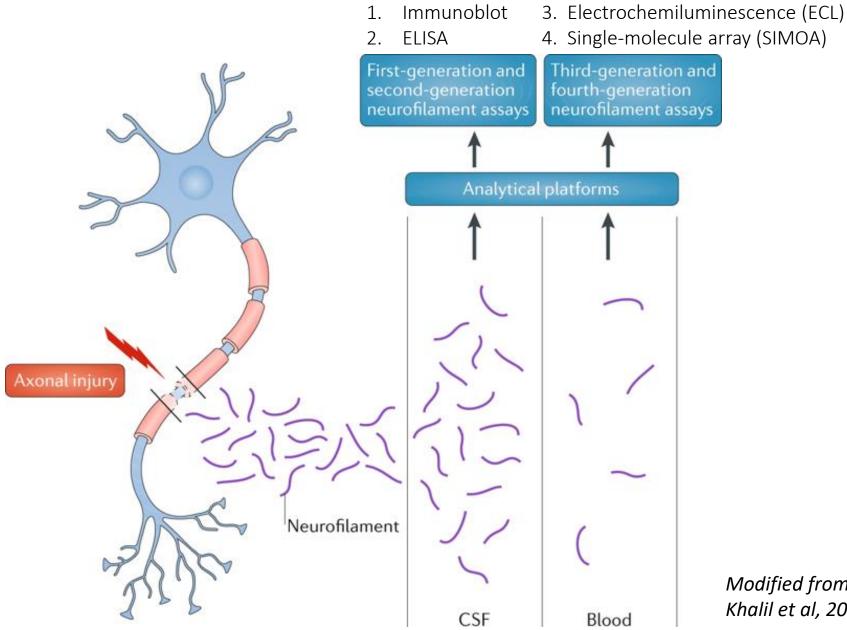

Neurodegeneration, neuroinflammation, traumatic brain injuries (TBI) and multiple sclerosis (MS) represent the strategic focus, in which SIMOA technology is finding the major advancements in health research and precision health medicine.

<u>Alpha-synuclein</u>	<u>GFAP*, UCHL-1*)</u>
<u>Αβ40</u>	<u>NF-light[®]</u>
<u>Αβ42</u>	<u>NF-light[®] Advantage Kit (SR-X)</u>
<u>BDNF</u>	<u>NSE</u>
<u>GFAP</u>	<u>P-Tau 181</u>
<u>MMP-9</u>	<u>P-Tau 231</u>
<u>Neuro 4-Plex B</u>	<u>pNF-Heavy</u>
<u>Neurology 2-Plex A (Tau, Aβ42)</u>	<u>Tau</u>
<u>Neurology 3-Plex A (Tau, Aβ42,</u>	<u>Tau (mouse)</u>
<u>Aβ40)</u>	<u>TDP-43</u>
<u>Neurology 4-Plex A (NF-light[®], Tau,</u>	UCH-L1

Multiplex	Advanta	ge Assays	- Human			T. Anna I		
Assay	Analytes	LoD (pg/mL)	LoQ (pg/mL)	Dynamic Range (pg/mL)	Median Endogenous (pg/mL)	Sample Volume*	Sample Type ^{rr}	Catalog Number
Carables	TNFa	0.011	0.051	0-112	144			-
Cytokine 3-Piex A	IL-6	0.006	0.011	0-60	1.71	25 µl.	E, S 101	101160
J-FRA A	1L-10	0.0022	0.0073	0-24	0.4			
-	TNFa	0.021	0.026	0-112	2.48			100
Cytokine 3-Piex B	IL-6	0.011	0.023	0-60	1.33	25 µL	E, S	101319
J-FREX B	IL-17A	0.0047	0.0068	0-40	0.057		Sec. of Are	
Neurology 2-	A842	0.0249	0.171	0-800	8.1	10.4	6.6	101010
Plex A	Tau	0.02	0.067	0-400	2.75	18.4	C, E	101876
	A840	0.196	0.675	0-800	209			
Neurology 3-	A842	0.045	0.142	0-400	10,1	46 μ	C, E	101995
Plex A	Tau	0.019	0.063	0-400	1.43			
	GFAP	0.221	0.457	0-4000	89.7	46 µL		
Neurology 4- Plex A	NF-light	0.104	0.241	0-2000	10.6	4.6 pl (CSF)		100000
	Tau	0.024	0.053	0-400	2.21		C, E, S	102153
	UCH-L1	174	5.45	0-40,000	12.21			

NEUROFILAMENTS

- Structural scaffolding proteins exclusively expressed in neurons
- Highly specific for neuronal cell damage
- Following axonal damage neurofilament proteins are realeased into CSF and peripheral blood (at low concentration)
- High levels of neurofilaments are general indicators of axonal damage

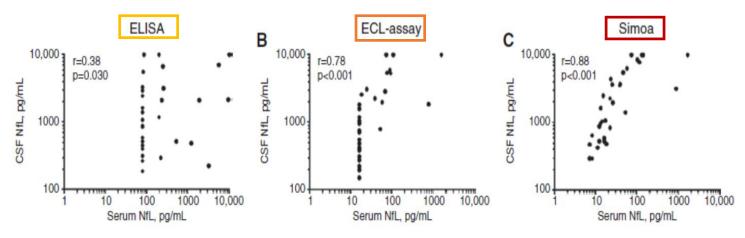


Gaetani L. et al. J Neurol Neurosurg Psychiatry 2019

SHIFT FROM CSF TO SERUM

- need for lumbar puncture constitutes a major barrier for more widespread use
- moving from CSF- to blood-based biomarkers would be a major step for longitudinal studies.
- Need of ultrasensitive assays to detect proteins that are released into the bloodstream at very low concentration

ASSAYS TO DETECT NFL



Modified from Khalil et al, 2018

NFL IN SERUM/PLASMA

Jens Kuhle*, Christian Barro, Ulf Andreasson, Tobias Derfuss, Raija Lindberg, Åsa Sandelius, Victor Liman, Niklas Norgren, Kaj Blennowª and Henrik Zetterbergª

Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa

Modified from Kuhle J et al. Clin Chem Lab, 2016

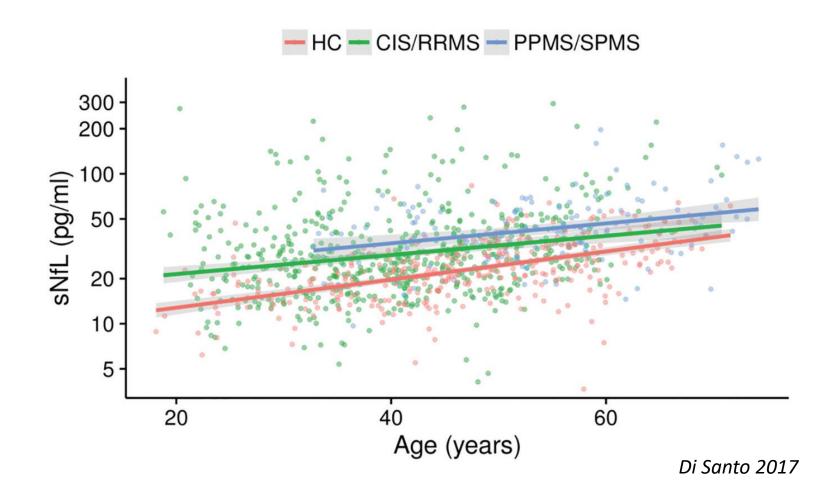
SENSITIVITY

SIMOA sensitivity is 126-fold higher than traditional ELISA and 25-fold more sensitive than ECL assay

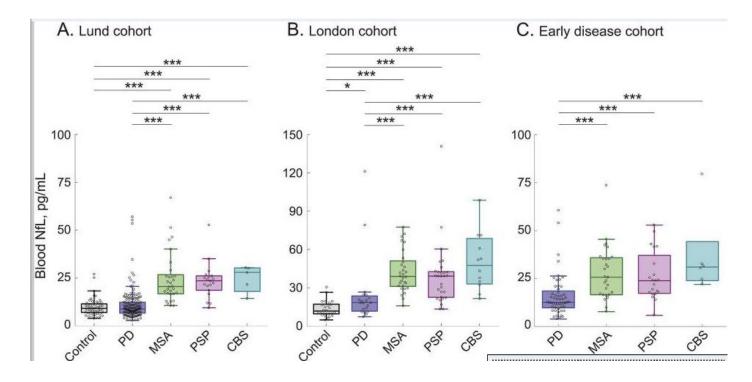
SIMOA: 0.62 pg/ml ECL: 15.6 pg/ml ELISA: 78.0 pg/ml

NEUROFILAMENTS IN NEUROLOGICAL DISORDERS

Box1 Relevance of neurofilaments to neurological disorders


Neurofilaments have been studied in several neurological disorders, and, in many, good evidence supports their diagnostic and prognostic value and/or their use for monitoring treatment responses. The disorders reviewed here are as follows:

- Multiple sclerosis
- Dementia
- Stroke
- Traumatic brain injury
- Amyotrophic lateral sclerosis
- Parkinson disease
- Huntington disease
- Bipolar disorder (limited evidence for clinical utility)


In addition, neurofilaments could be of relevance in many other neurological disorders, but their association with these disorders has not systematically been studied. Such disorders include the following:

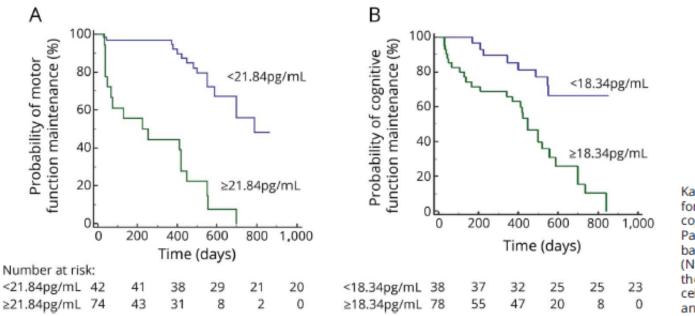
- Epilepsy
- Encephalitis
- Meningitis
- Hypoxic brain injury
- Optic neuropathies
- Intracranial pressure
- Neurotoxicity
- Peripheral neuropathies including Guillain–Barré syndrome, chronic inflammatory demyelinating neuropathy and Charcot–Marie–Tooth disease

NFL LEVELS AND AGE

NFL in parkinsonian disorders

Findings:

.


- Blood and CSF NfL correlate
- NfL is significantly increased in APD vs. controls and PD, including early stage disease
- NfL correlated with disease severity (NOT duration)
- Conclusion: NfL has potential value in Hansson et al, Neurology 2017 differentiating PD from APD

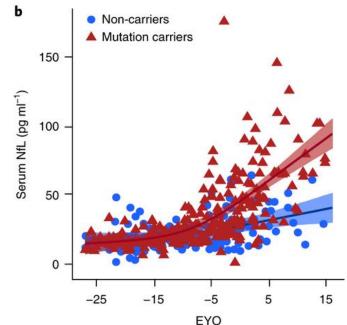
Blood NfL

A biomarker for disease severity and progression in Parkinson disease

Chin-Hsien Lin, MD, PhD, Cheng-Hsuan Li, MD, Kai-Chien Yang, MD, PhD, Fang-Ju Lin, PhD, Chau-Chung Wu, MD, PhD, Jen-Jie Chieh, PhD, and Ming-Jang Chiu, MD, PhD *Neurology*[®] 2019;93:e1104-e1111. doi:10.1212/WNL.000000000008088 Nf L

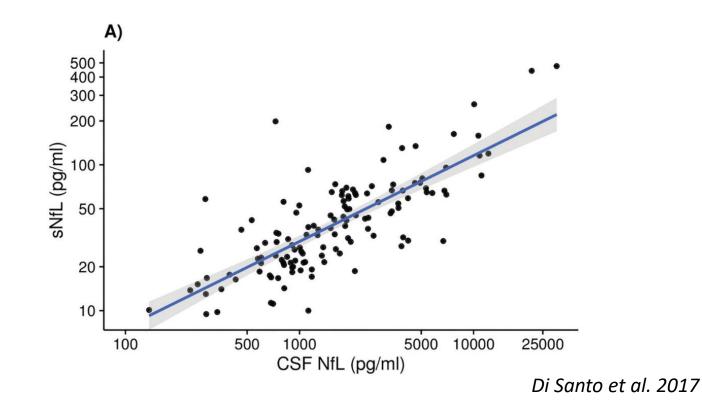
Figure 3 Motor and cognition progression in patients with PD with high or low plasma NfL levels in the follow-up study

Kaplan-Meier plots show outcomes for (A) motor progression and (B) cognitive progression in patients with Parkinson disease (PD) who had baseline neurofilament light chain (NfL) concentrations above or below the cutoff levels determined by receiver operating characteristic curve analyses.


Correspondence

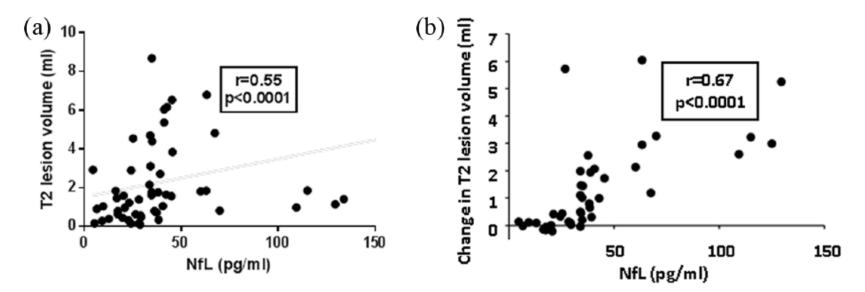
mjchiu@ntu.edu.tw

Dr. Chiu

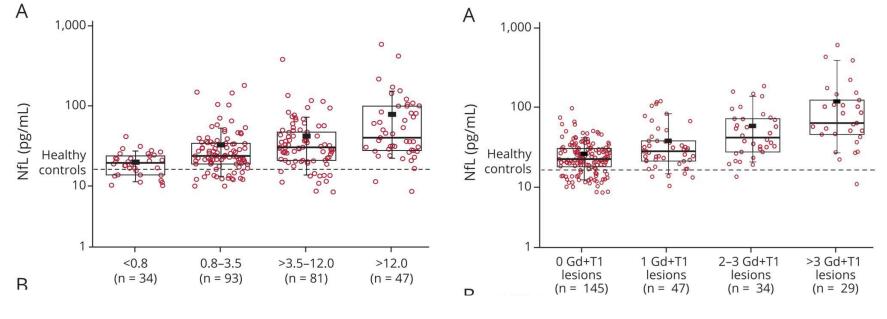

NFL in Alzheimer's diseases

- Study involving participants at 50% risk of carrying an autosomaldominant Alzheimer's mutation in APP, PSEN1 or PSEN2 gene enrolled (DIAN cohort)
- Baseline serum (and CSF) NfL levels significantly increased for mutation carriers at -6.8 EYO (estimated years to onset)
- Rates of change in serum NfL conc. can discriminate mutation carriers from non-carriers as early as -16.2 EYO (nearly 10 years earlier than baseline serum NfL measurements alone)
- Changes in serum NfL can predict progression in familial Alzheimer's at early pre-symptomatic stages earlier than baseline NfL measurements alone

Preische et al Nature Med 2019


NFL IN MULTIPLE SCLEROSIS Correlation between CSF and Serum/plasma levels in MS

Levels in serum are about 40-100 fold lower than in CSF


3. sNFL as prognostic biomarker

- Prognostic value at baseline for future relapses, new MRI lesions, brain volume loss and risk of disability worsening
- Prognostic value in CIS patients later converting to MS

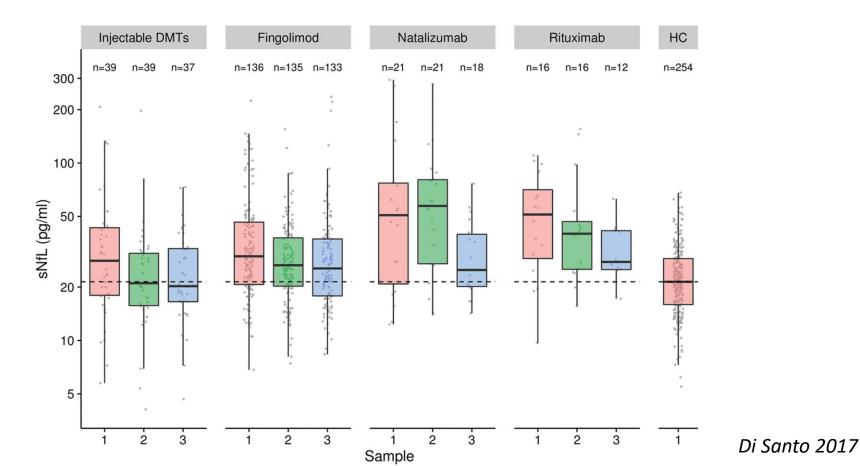
Baseline sNfL correlated significantly with T2 lesion volume and change in T2 lesion volume over time

1. sNFL as biomarker of disease and MRI activity

Kuhle 2019

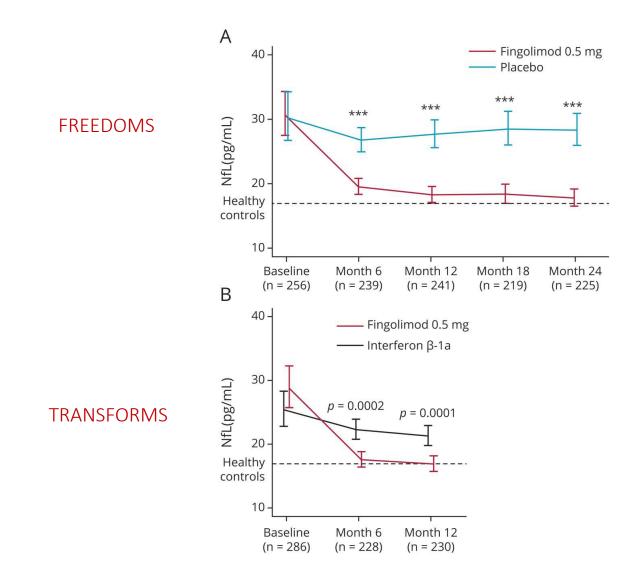
NfL concentrations increased gradually with higher baseline T2 lesion volume NfL concentrations were higher in patients with Gd+ lesions compared with those free of Gd+ lesions

2. NFL as biomarker of treatment response


Inverse correlation was found between sNFL levels and treatments

TREATMENT	FOLLOW-UP	REF
β-interferons	6-12-24months	Siller 2018, Di Santo 2017, Novakova 2017, Varhaug 2018, Kuhle 2019
Glatiramer acetate	6-13 months	Siller 2018, Di Santo 2017, Novakova 2017
Dimethyl fumarate	13 months	Siller 2018
Teriflunomide	13 months	Siller 2018
Natalizumab	6-12 months	Di Santo 2017, Novakova 2017
Rituximab	6-12 months	Di Santo 2017, Novakova 2017
Alemtuzumab	12- Up to 102 months	Novakova 2017, Akgun 2019, Hyun 2019
Fingolimod	6-12 months	Di Santo 2017, Novakova 2017, Piehl 2017, Kuhle 2019

Effect of treatments on NFL levels


Association between time under treatment and sNfL during follow-up (T0, 6 months, 12 months)

sNfL levels decreased in patients starting injectable DMTs, fingolimod, natalizumab, or rituximab over time.

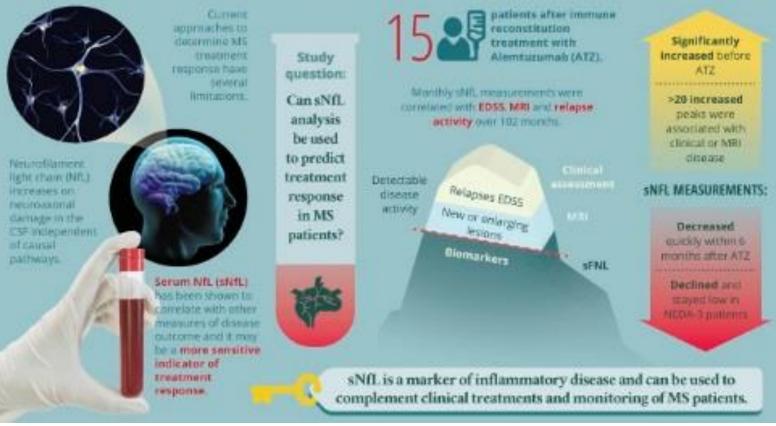
sNFL levels in Fingolimod treatment

sNfL concentrations in the Fingolimod group were significantly lower compared with both placebo and IFN- β -1a.

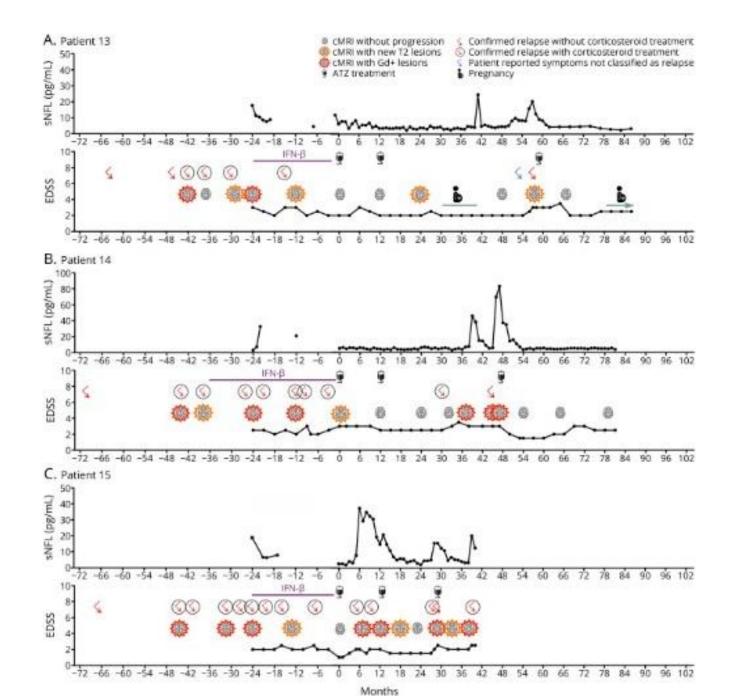
Kuhle 2019

JAMA Neurology | Original Investigation

Serum Neurofilament Light Chain Levels in Patients With Presymptomatic Multiple Sclerosis


Kjetil Bjornevik, MD, PhD; Kassandra L. Munger, ScD; Marianna Cortese, MD, PhD; Christian Barro, MD; Brian C. Healy; David W. Niebuhr, MD; Ann I. Scher, PhD; Jens Kuhle, MD, PhD; Alberto Ascherio, MD, DrPH

CONCLUSIONS AND RELEVANCE The levels of sNfL were increased 6 years before the clinical MS onset, indicating that MS may have a prodromal phase lasting several years and that neuroaxonal damage occurs already during this phase.


NFL IN INDIVIDUAL MONITORING

Profiling individual clinical responses by highfrequency serum neurofilament assessment in MS

Serum Neurofilament Assessment in MS patients

Akgun K et al, Neurol, neuroimmunol, Neuroinfl 2019

- After ATZ, sNfL decreased quickly within the first 6 months.
- In patients classified as NEDA-3, sNfL declined and persisted at an individual low steady-state level.
- Definition of clinically significant increase for each patient based on individual steady-state level
- 34 sNfL peaks with a >20 fold increase could be detected, which were associated with clinical or MRI disease activity, or even patient-reported relapse-suspicious symptoms
- sNfL started to increase earliest 5 months before, peaked at clinical onset, and recovered within 4–5 months.
- sNfL presented at higher levels in active patients requiring ATZ retreatment compared with responder patients.

SIMOA TECHNOLOGY AT CReSM

Il laboratorio del CReSM si è recentemente dotato dello strumento SR-X Ultra-Sensitive Biomarker Detection System.

- sistema compatto
- rilevamento a livelli di ultra-sensibilità di singoli biomarcatori o di diverse molecole in multiplex (fino a quattro biomarcatori per campione),
- volumi ridotti di campione (25 ul di siero/plasma per i NFL)
- ampio spettro di matrici biologiche

Lo strumenti SR-X, e la strumentazione SIMOA disponibili nel laboratorio del CReSM

Esperimento #1 13/06/2019

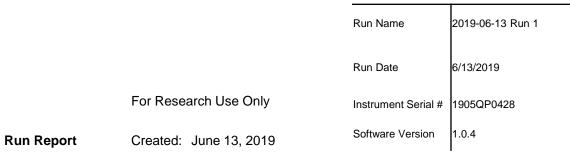
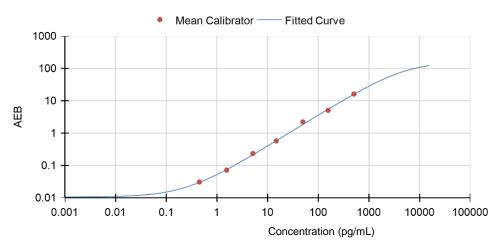
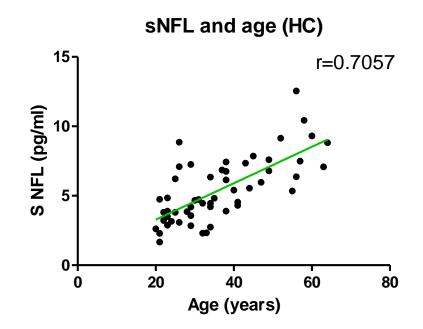



Plate Layout 2019-06-13_12-05 NF-light Advantage 20190613153309

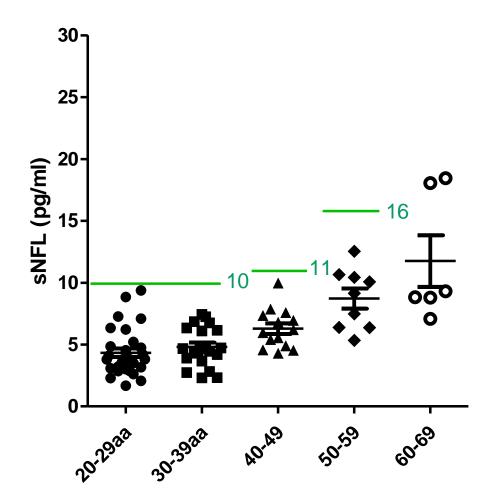
Cur	Curve Information			Fit Equation		
		Α	1,06E-002			
Fit Algorithm	4PL					
genun	=	B	9,70E-001			
Waighting Easter	WeightOverYSquared	С	5,07E+003	$Y(x) = B + \frac{A - B}{1 + \left(\frac{x}{C}\right)^D}$		
Weighting Factor	weightOver i Squared	Þ	1,65E+002	$I(x) = D + \frac{1}{1 + (\frac{x}{2})^D}$		
R²	0,997751474			- (6)		
ľ,	0,337731474					
Date Created	June 13, 2019					
Created by	LABUSER					

Real-life experience with NFL at CReSM

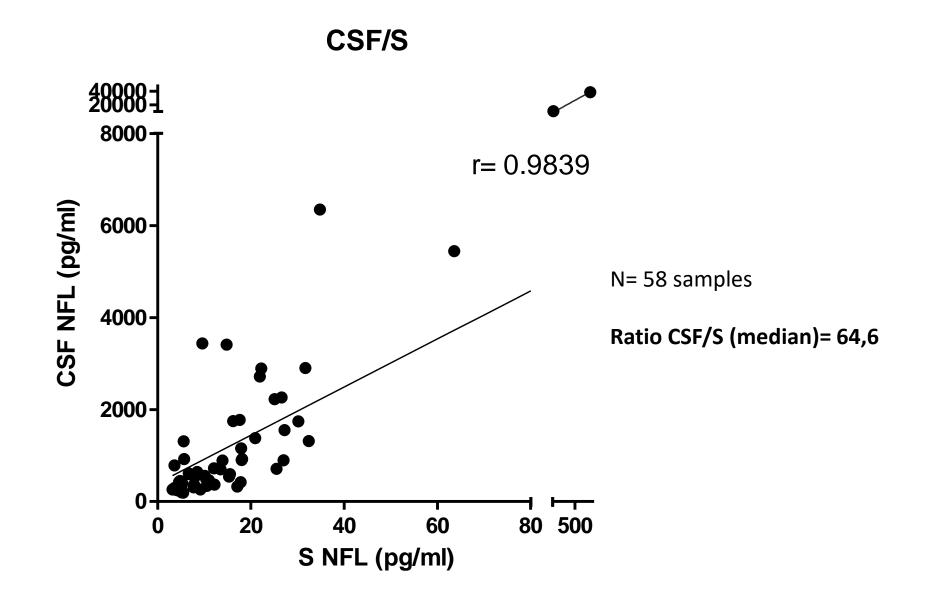

N= 24 NF-light SIMOA assay sessions

- 23 assays with kit 103186,
- 1 assay with new SR-X diluent (kit 103400)

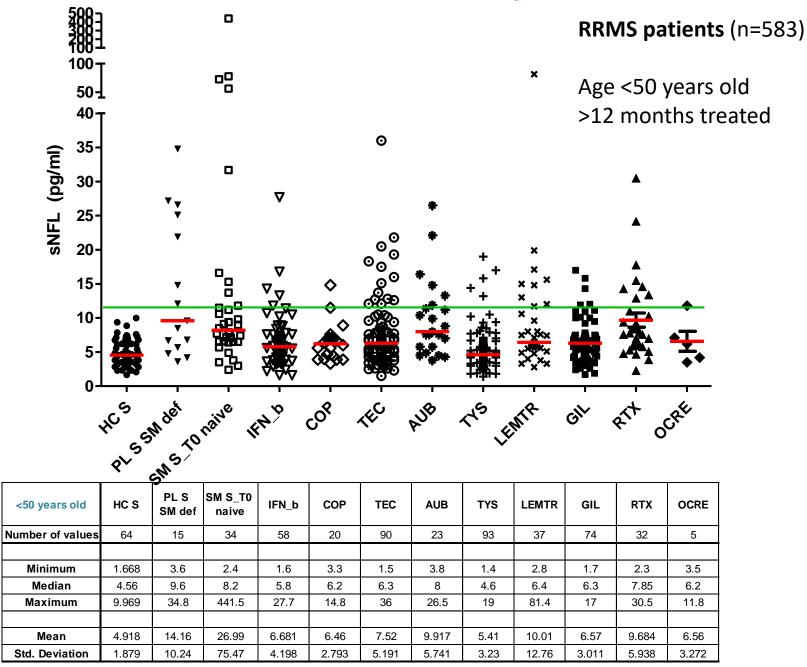
N= 1058 samples from 897 participants (HC and patients)


- 79 serum sample from HC
- 58 serum samples at lumbar puncture
- 58 CSF samples from patients at lumbar puncture
- 848 serum samples from MS patients pre-treatment or during follow-up
- 15 plasma samples from HC

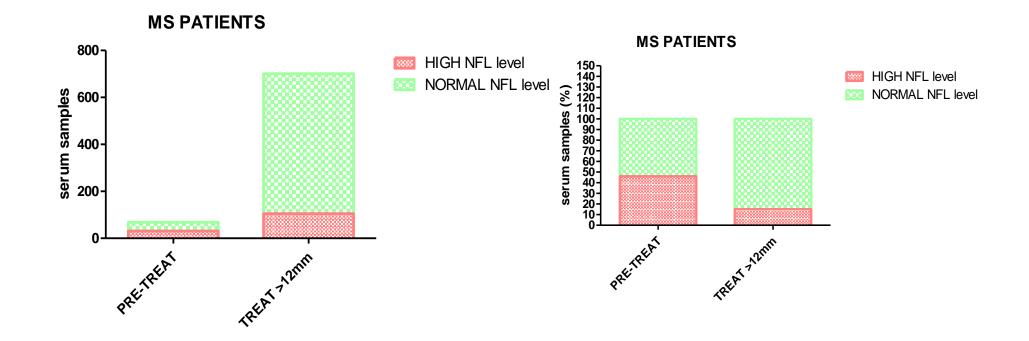
NFL LEVELS in HC at CReSM


	20-29aa	30-39aa	40-49	50-59	60-69
Number of values	29	21	14	9	6
Minimum	1.668	2.31	4.303	5.35	7.081
25% Percentile	3.046	3.774	4.814	6.376	8.36
Median	3.81	4.664	6.086	9.144	9.065
75% Percentile	5.029	6.242	7.406	10.55	18.15
Maximum	9.366	7.435	9.969	12.54	18.45
Mean	4.338	4.807	6.283	8.715	11.75
Std. Deviation	1.918	1.587	1.589	2.428	5.094
mean +2sd	8.174	7.981	9.461	13.571	21.938
mean +3sd	10.092	9.568	11.05	15.999	27.032

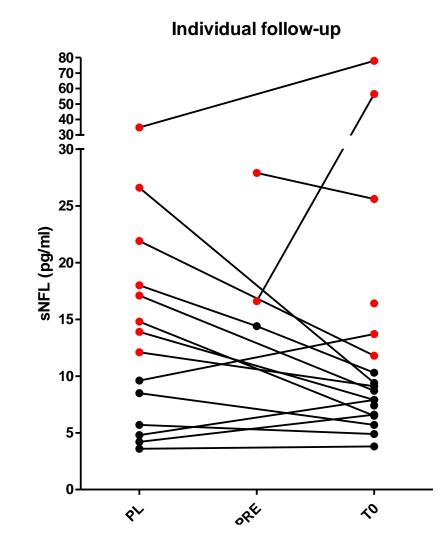
CUT-OFF definition



	20-29aa	30-39aa	40-49	50-59	60-69
Number of values	29	21	14	9	6
Minimum	1.668	2.31	4.303	5.35	7.081
25% Percentile	3.046	3.774	4.814	6.376	8.36
Median	3.81	4.664	6.086	9.144	9.065
75% Percentile	5.029	6.242	7.406	10.55	18.15
Maximum	9.366	7.435	9.969	12.54	18.45
Mean	4.338	4.807	6.283	8.715	11.75
Std. Deviation	1.918	1.587	1.589	2.428	5.094
mean +2sd	8.174	7.981	9.461	13.571	21.938
mean +3sd	10.092	9.568	11.05	15.999	27.032


NFL LEVELS in patients: correlation between serum and CSF NFL levels

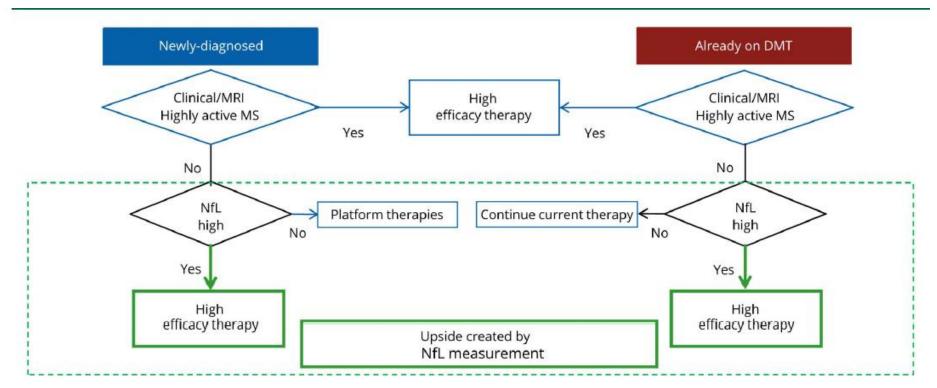
Effect of treatments in MS patients


Prevalence of NFL levels in naive and treated MS patients

MS patients	high NFL		low NFL		tot
naive	31	(46%)	37	(54%)	68
Treat>12mm	105	(15%)	596	(84%)	701

NFL LEVELS in patients : individual follow-up

Pre-treatment follow-up in MS patients


IMPLEMENTING NFL IN CLINICAL PRACTICE

NEED OF ASSAY STANDARDIZATION AND VALIDATION

- Prospective studies
- Larger cohorts
- Baseline+follow-up data
- External calibration of the assay
- Compare results between different centers
- Determining cut-off values
 - Cut-off based on healthy people values (age-dependent)
 - Intra-individual cut-off value
- Defining the best time-interval to monitor NFL levels

Once validated, replicated, standardized, and widely accessible, blood NfL could be a game changer in clinical neurology, a simple blood test to monitor axonal injury, which should help neurologists to select and guide the choice of disease-modifying treatments, which are becoming available for many neurologic diseases.

Proposed flow-chart for use of NFL for individual therapeutic decision making in MS

Hit hard/hit early: Expanding use of high efficacy therapies. First-line in patients who look stable, but are not, as they have high rate of neuronal loss

Support increased and earlier switch to high efficacy therapy

Leppert and Kuhle 2019

Neurologia & CReSM Centro Riferimento Regionale Sclerosi Multipla Azienda Ospedaliera Universitaria San Luigi, Orbassano

Attività Clinica Rugiada Bottero Marco Capobianco Marianna Lo Re Maria Malentacchi Simona Malucchi Enri Nako Alessandra Oggero Francesca Sperli

Rossella Bazzo Mimma Di Mundo Patrizia Milan Marina Panealbo Federica Ruscelllo Sabrina Sardisco Giuliana Savoldi

Laboratorio Neuro-

Biologia Clinica Serena Martire Francesca Montarolo Simona Perga Arianna Sala Michela Spadaro Paola Valentino

Luca Migliore

Segreteria Scientifica Chiara Sciolla Alice Grometto

fondazione

un mondo

libero dalla SM

italiana

<u>Psicologia</u> Martina Borghi Scavelli Francesco

Banca Biologica Fabiana Marnetto Federica Brescia

Neurofisiologia Francesca Sperli Francesca Celotto Cristina Favarato Giacomo Vesco