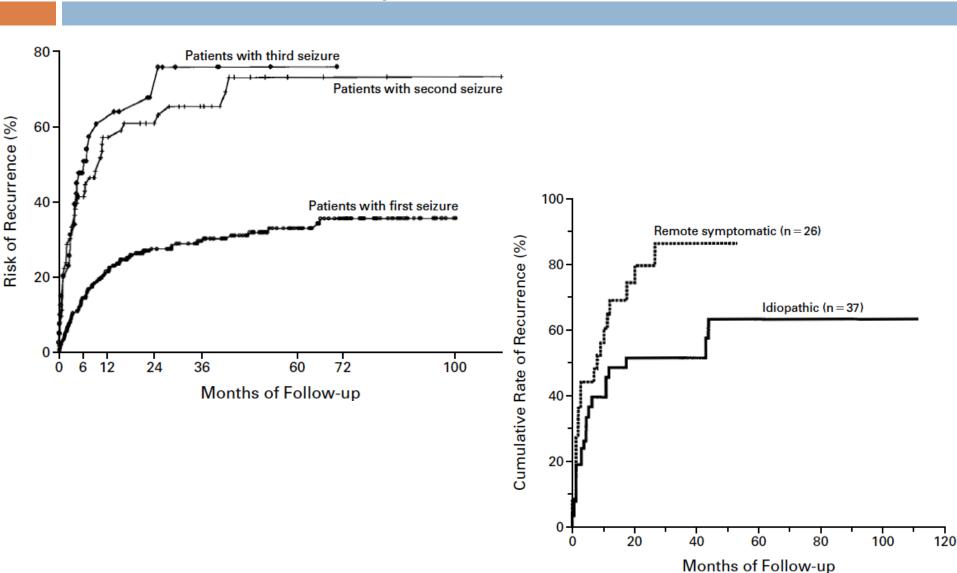


#### ASPETTI CONTROVERSI NELLA TERAPIA ANTIEPILETTICA QUANDO INIZIARE IL TRATTAMENTO

D Arnaldi Clinica Neurologica, DINOGMI, Università di Genova


## Definition of Epilepsy

- Epilepsy is a disease of the brain defined by any of the following conditions:
  - At least two unprovoked (or reflex) seizures occurring more than 24 hours apart
  - One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years
  - Diagnosis of an epilepsy syndrome
- Epilepsy is considered to be resolved for individuals who had an age-dependent self-limited epilepsy syndrome but who are now past the applicable age, or for those who have remained <u>seizure-free</u> for the last **10 years**, with no seizure medication for the last **5 years**.

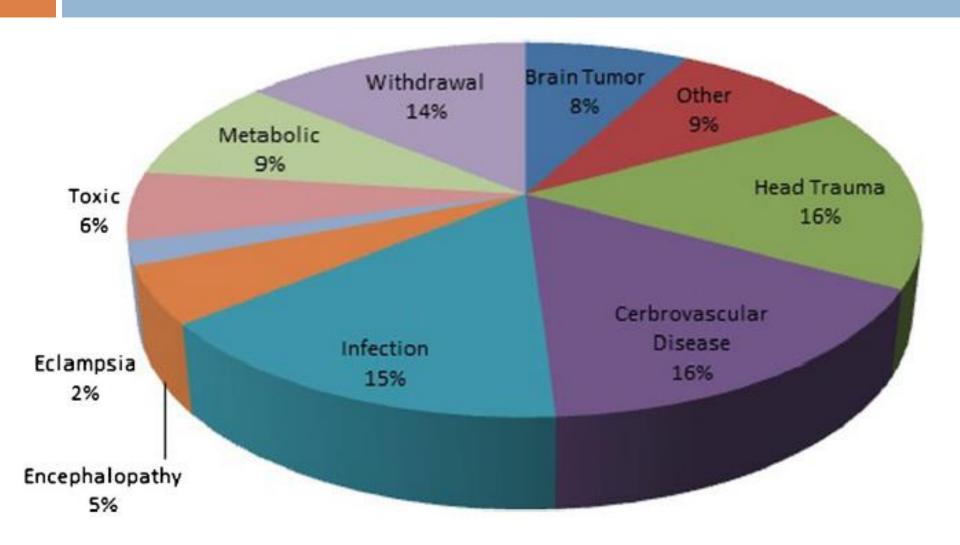
#### RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES

W. Allen Hauser, M.D., Stephen S. Rich, Ph.D., Ju R.-J. Lee, Ph.D., John F. Annegers, Ph.D., and V. Elving Anderson, Ph.D.

N Engl J Med 1998;338:429-34

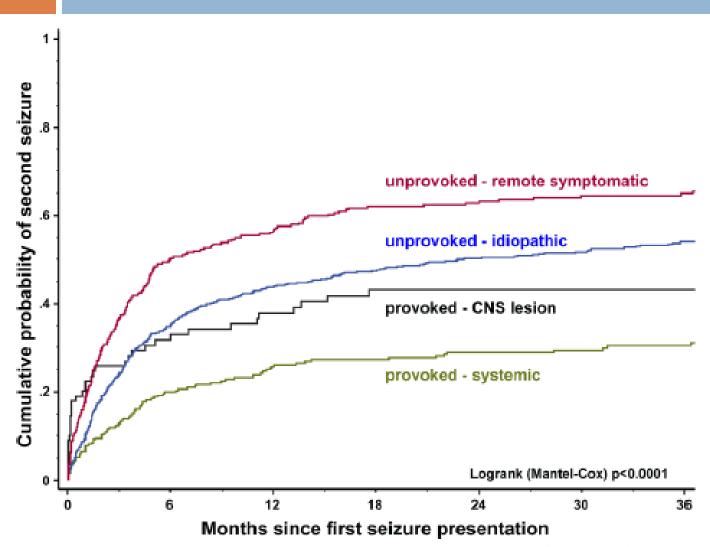


#### First seizure classification


- Provoked immediate
  - caused by toxin, medication, or metabolic factors
- Acute symptomatic
  - a seizure occurring at the time of a <u>systemic insult</u> or in close temporal association with a documented <u>brain insult</u>
- Remote symptomatic
  - seizure caused by preexisting brain injury
- Seizure associated with epileptic syndrome
  - e.g., juvenile myoclonic epilepsy
- Unidentified

## Provoked seizures

| Biochemical parameter | Value                                  |
|-----------------------|----------------------------------------|
| Serum glucose         | <36 mg/dl (2.0 mm)                     |
|                       | or >450 mg/dl (25 mm) associated       |
|                       | with ketoacidosis                      |
|                       | (whether or not there                  |
|                       | is long-standing diabetes)             |
| Serum sodium          | <115 mg/dl (<5 mm)                     |
| Serum calcium         | <5.0 mg/dl (<1.2 mm)                   |
| Serum magnesium       | <0.8 mg/dl (<0.3 mm)                   |
| Urea nitrogen         | <100 mg/dl (>35.7 mm)                  |
| Creatinine            | >10.0 mg/dl (>884 μM)                  |
| Alcohol withdrawal s  | seizures<br>NO ANTI-EPILEPTIC TREATMEN |
| abrupt cessation      | -NITI-EPILEPTIC TI                     |
| □ heavy alcohol use   | NO ANTE                                |


- Alcohol withdrawal seizures
  - abrupt cessation
  - heavy alcohol use

## Symptomatic seizures aetiology



Epilepsia. 1995;36(4):327–33

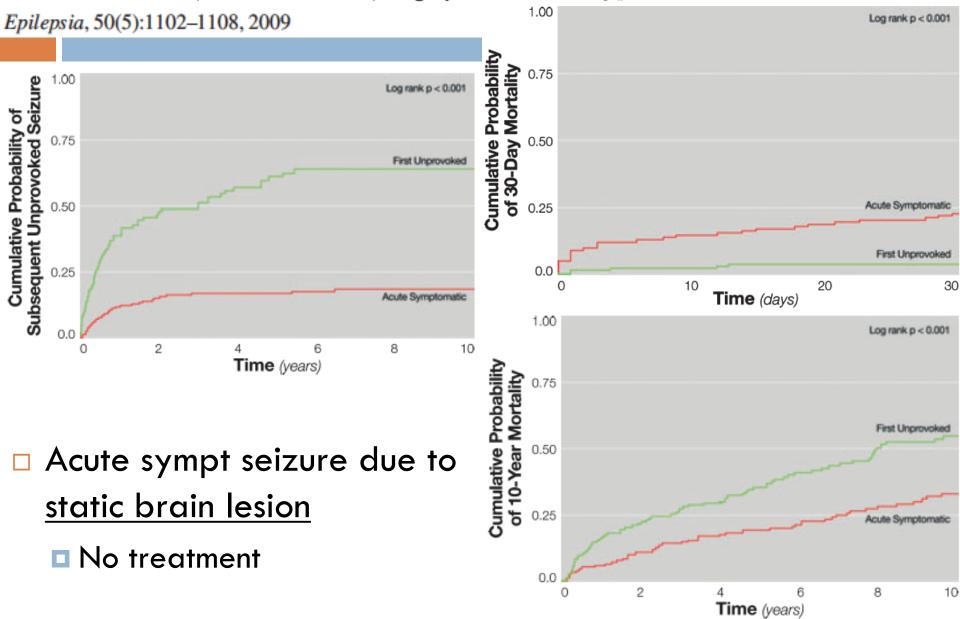
# Seizure recurrence according to aetiological subgroup of first seizure.



Brown JWL, et al. J Neurol Neurosurg Psychiatry 2015;86:60–64.

## Acute or Remote symptomatic seizure?

Insult to the central nervous system that is known to increase substantially the risk for subsequent epilepsy: Head trauma ■ N Engl J Med 1998;338:20-4 Within 7 days Acute Cerebrovascular insult Neurology 1996;46:350-5 CNS infection Beyond 7 days **Acute** Abn lab tests J Infect Dis 1986;154:399-408 Encephalopathy from birth or cerebral palsy Remote Dev Med Child Neurol 1986;28:Suppl 53:36


#### To treat or not to treat...

- □ Should we treat a first acute symptomatic seizure?
- Should we treat a first remote symptomatic seizure?



## Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure

\*Dale C. Hesdorffer, †Emma K. T. Benn, ‡Gregory D. Cascino, and §¶W. Allen Hauser



#### To treat or not to treat...

- Should we treat a first acute symptomatic seizure?
  - NO!
- Should we treat a first remote symptomatic seizure?
  - □ YES!





Evidence-based guideline: Management of an unprovoked first seizure in adults

Neurology® 2015;84:1705-1713

- □ Risk of seizure recurrence within 2 ys → 21-45%
- □ Increased risk of seizure recurrence
  - Brain insult (stroke, trauma)
  - Brain-imaging significant abnormalities
  - EEG epileptiform abnormalities
  - Nocturnal seizure
- Immediate AEDs treatment may not improve QOL and is <u>unlikely to improve</u> the **prognosis** for sustained seizure remission
- □ 7 − 31% risk of mild & reversible adverse events

#### Practice parameter: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors: Report of the Quality Standards Subcommittee of the American Academy of Neurology

M.J. Glantz, B.F. Cole, P.A. Forsyth, et al. Neurology 2000;54;1886

- In patients with newly diagnosed brain tumors, anticonvulsant medications are not effective in preventing first seizures.
  - Prophylactic anticonvulsants should not be used routinely in patients with newly diagnosed brain tumors.

In patients with brain tumors who have not had a seizure, tapering and discontinuing anticonvulsants after the first postoperative week is appropriate.

D.J. ENGLOT ET AL.

## Epilepsy and brain tumors

#### Incidence and risk factors of epilepsy across brain tumor types

| Tumor type            | Approximate incidence of seizures | Risk factor for seizures                  | References                                                                                                                       |
|-----------------------|-----------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Glioneuronal tumors   | 70-80%                            | Frontotemporal, insular                   | Aronica et al. (2001); Luyken et al. (2003); Southwell et al. (2012)                                                             |
| Low-grade<br>gliomas  | 60–75%                            | Frontotemporal, insular, superficial      | Chang et al. (2008a); Pignatti et al. (2002); Recht and Glantz (2008); Lee et al. (2010); You et al. (2012); Iuchi et al. (2015) |
| High-grade<br>gliomas | 25–60%                            | WHO grade III, temporal lobe, superficial | Sheth (2002); van Breemen et al. (2007); Jacoby et al. (2008); Chaichana et al. (2009b); Sizoo et al. (2010)                     |
| Meningiomas           | 20–50%                            | Peritumoral edema                         | Yao (1994); Chow et al. (1995); Lieu and Howng (2000);<br>Oberndorfer et al. (2002)                                              |
| Metastases            | 20–35%                            | Melanoma, lung cancer                     | Oberndorfer et al. (2002); Lynam et al. (2007); Avila (2013)                                                                     |

WHO, World Health Organization.

## Epilepsy and brain tumors

#### Seizure outcomes in surgery for brain tumors associated with preoperative epilepsy

| Tumor type          | Approximate seizure freedom rates | Seizure freedom predictors                                                      | References                                                                                                            |
|---------------------|-----------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Glioneuronal tumors | 70–90%                            | Gross total resection, early surgery, absence of generalized seizures           | Giulioni et al. (2005); Park et al. (2008);<br>Chang et al. (2010); Englot et al. (2012a);<br>Southwell et al. (2012) |
| Low-grade gliomas   | 65–80%                            | Gross total resection, early surgery,<br>localized EEG, less severe<br>epilepsy | Luyken et al. (2003); Zaatreh et al. (2003);<br>Benifla et al. (2006); Chang et al. (2008a);<br>Englot et al. (2011)  |
| Meningiomas         | 60–80%                            | Less peritumoral edema                                                          | Chow et al. (1995); Lieu and Howng (2000);<br>Chaichana et al. (2013); Fang et al. (2013);<br>Zheng et al. (2013)     |

Yes, if develops remote SS

## Management guidelines

**CNS** infection

Acute SS

| Etiology                         | Type of seizure | Short-term AED              | Long-term AED              |
|----------------------------------|-----------------|-----------------------------|----------------------------|
| Alcohol                          | Provoked        | Yes, BDZ                    | No                         |
| Metabolic                        | Provoked        | Maybe, if prolonged abn     | No                         |
| Ischemic stroke                  | Acute SS        | Maybe, depending on lesion  | Yes, if develops remote SS |
| Hemorrhagic stroke               | Acute SS        | Maybe, depending on lesion  | Yes, if develops remote SS |
| Subdural                         | Acute SS        | Maybe, depending on lesion  | Yes, if develops remote SS |
| Subarachnoid                     | Acute SS        | Maybe, depending on lesion  | Yes, if develops remote SS |
| Cerebral venous sinus thrombosis | Acute SS        | Yes, 6-12 months            | Yes, if develops remote SS |
| PRES                             | Acute SS        | Yes, + treat etiology       | No                         |
| Eclampsia                        | Acute SS        | Maybe, + ev Mg & BP control | No                         |
| Trauma                           | Acute SS        | Yes, 1 week → 3 months      | Yes, if develops remote SS |

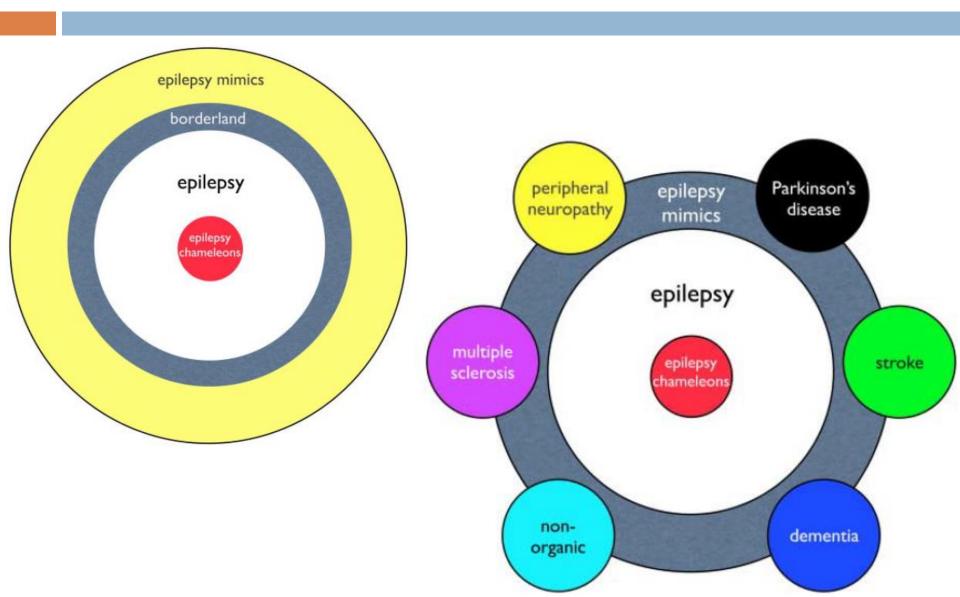
#### When to stop? ...next talk!

Yes, + treat etiology

#### Grazie!!!

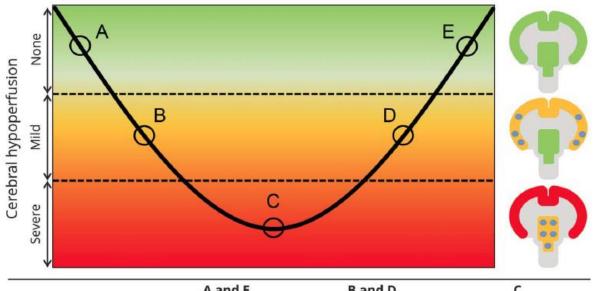
Clinical Neurology, DINOGMI University of Genoa

Flavio Nobili Nicola Girtler Andrea Brugnolo Francesco Famà Agnese Picco Matteo Pardini Images processing and Statistic
Fabrizio De Carli (CNR)


Chincarini Andrea (INFN)
Pagani Marco (CNR)



Nuclear Medicine IRCCS San Martino-IST


Silvia Morbelli Matteo Bauckneht Selene Capitanio

# Epilepsy: mimics, Practical No. borderland and chameleons



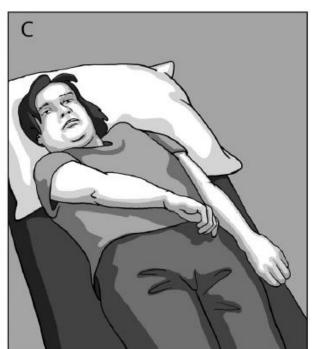
#### **Mimics**

#### Syncope time course



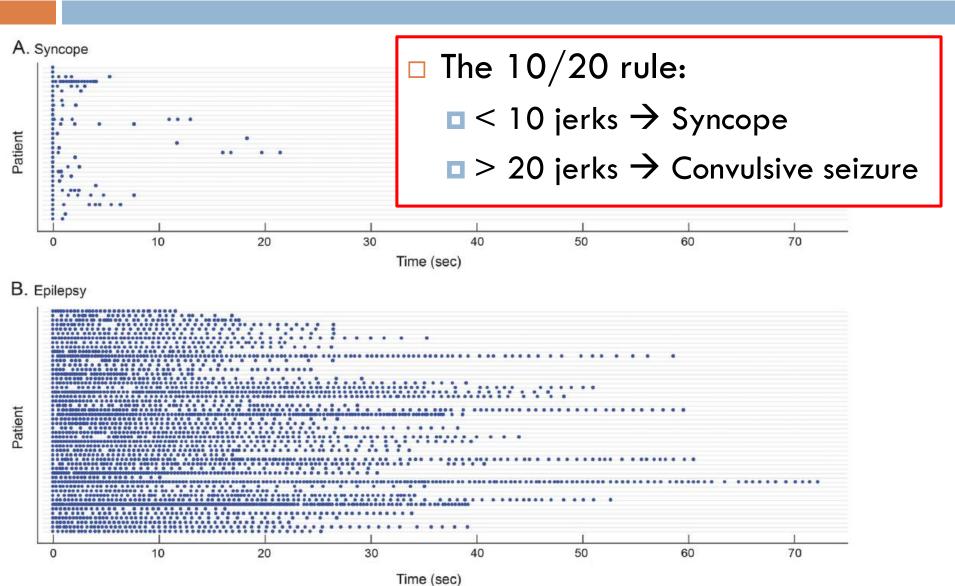
|                 | A and E | B and D                   | C                         |
|-----------------|---------|---------------------------|---------------------------|
| Function        |         |                           |                           |
| EEG             | Normal  | Slow                      | Flat                      |
| Cortex          | Normal  | Reduced and disinhibition | Loss                      |
| Brainstem       | Normal  | Normal                    | Reduced and disinhibition |
| Motor phenomena | None    | Myoclonic jerks           | Tonic postures            |

- Syncope
- Reflex
  - Vasovagal, micturition, swallow, carotid sinus, orgasmic and laughing
- Cardiac
  - Arrhythmogenic
  - Elderly: scar-related ventricular tachycardia
  - Young: long QT syndrome, short QT syndrome, arrhythmogenic right ventricular cardiomyopathy
  - Structural, aortic stenosis, hypertrophic cardiomyopathy
- Orthostatic
- Autonomic failure
- Psychogenic non-epileptic attack disorder
  - Panic disorder (especially in people with epilepsy)
  - Dissociative
  - Factitious and malingering
- Sleep disorders
  - Narcolepsy syndrome and cataplexy
  - Parasomnias (see Borderland of epilepsy section)
- Paroxysmal symptoms of structural brain disease
  - Multiple sclerosis
  - Tumour, eg, brainstem glioma
- Vascular
  - Migraine (hemiparetic, occipital, 'basilar artery')
  - Shaking transient ischaemic attack (critical bilateral stenosis)
  - Subclavian steal syndrome
  - Moyamoya (combination of TIA and seizures)
  - Not vertebrobasilar insufficiency
- Hypoglycaemia
  - Behaviour disturbance
  - Hemiparesis
- Movement disorder
  - Paroxysmal kinesigenic dystonia/dyskinesia
  - Myoclonus following hypoxia
- Hydrocephalus
  - Colloid cyst
  - Chiari malformation
- Drop attacks
  - Postural instability
  - Psychogenic


## Differentiating motor phenomena in tilt-induced syncope and convulsive seizures

Neurology® 2018;90:e1339-e1346.

Figure 2 Illustration of flexion and extension postures in tilt-induced syncope

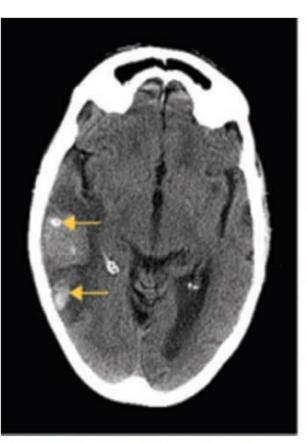


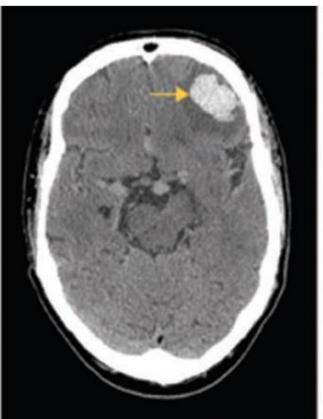





# Differentiating motor phenomena in tilt-induced syncope and convulsive seizures

Neurology® 2018;90:e1339-e1346.

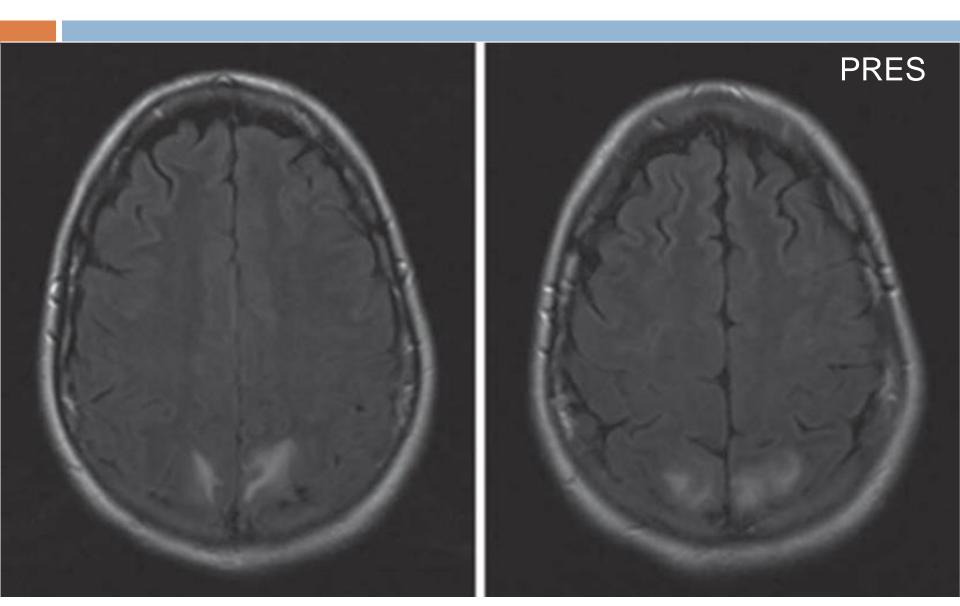




## Minimum requirements for the diagnosis of psychogenic nonepileptic seizures: A staged approach

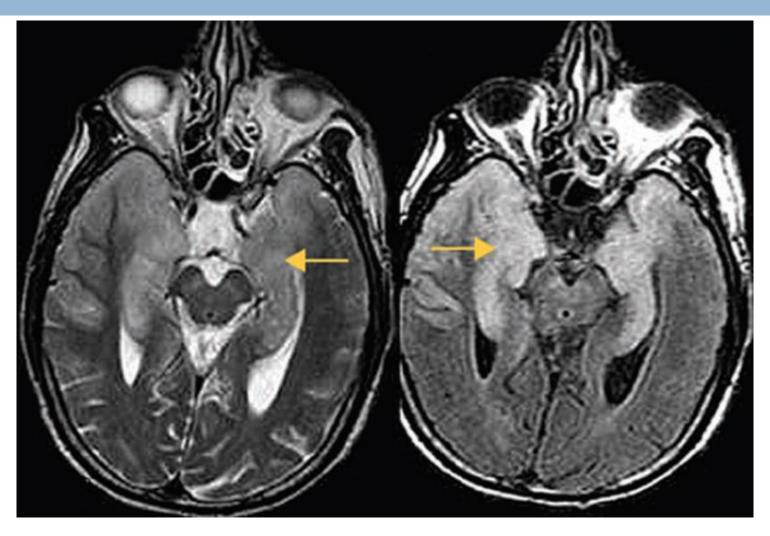
Epilepsia, 54(11):2005-2018, 2013

| Signs that favor PNES               | Evidence from primary studies                 | Sensitivity (%) for PNES | Specificity (%) for PN |
|-------------------------------------|-----------------------------------------------|--------------------------|------------------------|
| Long duration                       | Good                                          | _                        | _                      |
| Fluctuating course                  | Good                                          | 69 (events)              | 96                     |
| Asynchronous movements              | Good (frontal lobe partial seizures excluded) | 47-88 (patients)         | 96–100                 |
|                                     |                                               | 44-96 (events)           | 93–96                  |
|                                     |                                               | 9–56 (patients)          | 93–100                 |
| Pelvic thrusting                    | Good (frontal lobe partial seizures excluded) | I-31 (events)            | 96-100                 |
|                                     |                                               | 7.4-44 (patients)        | 92-100                 |
| Side to side head or body movement  | Good (convulsive events only)                 | 25-63 (events)           | 96-100                 |
|                                     |                                               | 15-36 (patients)         | 92-100                 |
| Closed eyes                         | Good                                          | 34-88 (events)           | 74–100                 |
|                                     |                                               | 52-96 (patients)         | 97                     |
| lctal crying                        | Good                                          | 13-14 (events)           | 100                    |
|                                     |                                               | 3.7-37 (patients)        | 100                    |
| Memory recall                       | Good                                          | 63 (events)              | 96                     |
|                                     |                                               | 77–88 (patients)         | 90                     |
| Signs that favor ES                 | Evidence from primary studies                 | Sensitivity for ES       | Specificity for ES     |
| Occurrence from EEG-confirmed sleep | Good                                          | 3 I-59 (events)          | 100                    |
|                                     |                                               | -                        | _                      |
| Postictal confusion                 | Good                                          | 61–100 (events)          | 88                     |
| 0                                   | 6 1/ 1:                                       | 67 (patients)            | 84                     |
| Stertorous breathing                | Good (convulsive events only)                 | 61–91 (events)<br>–      | 100                    |
| Other signs                         | Evidence from primary studies                 |                          |                        |
| Gradual onset                       | Insufficient                                  |                          |                        |
| Nonstereotyped events               | Insufficient                                  |                          |                        |
| Flailing or thrashing movements     | Insufficient                                  |                          |                        |
| Opisthotonus "arc en cercle"        | Insufficient                                  |                          |                        |
| Tongue biting                       | Insufficient                                  |                          |                        |
| Urinary incontinence                | Insufficient                                  |                          |                        |

Rob Powell,<sup>1</sup> Duncan James McLauchlan<sup>2</sup>

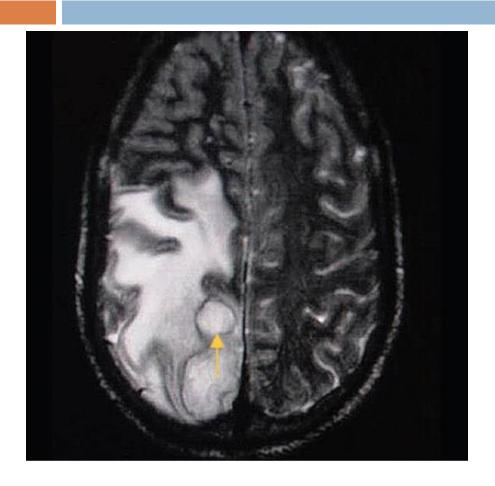




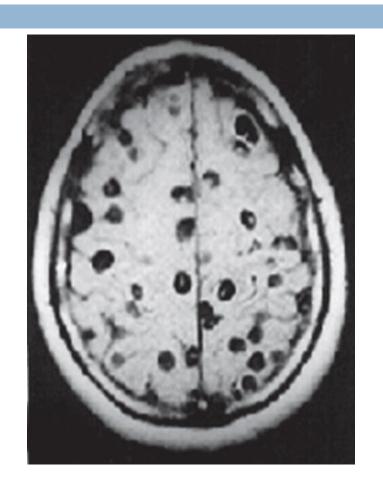




**Figure 1** CT scan of head showing transverse sinus thrombosis causing venous infarctions and haemorrhagic transformation with intracerebral and subarachnoid haemorrhage.

Rob Powell, 1 Duncan James McLauchlan<sup>2</sup>

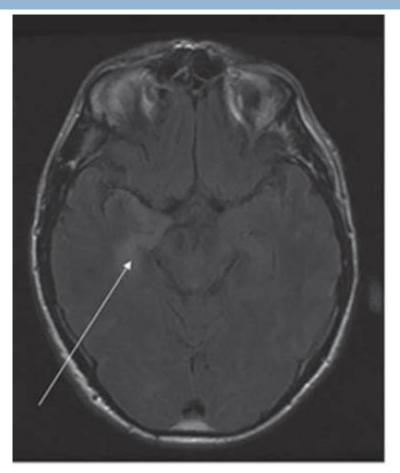


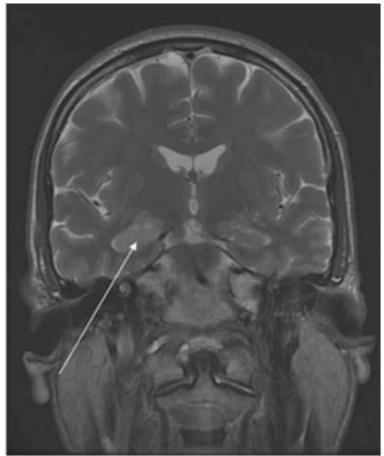

Rob Powell, 1 Duncan James McLauchlan<sup>2</sup>




VIRAL ENCEPHALITIS

Rob Powell, 1 Duncan James McLauchlan<sup>2</sup>





Cerebral abscess + oedema



Neurocysticercosis.

Rob Powell,<sup>1</sup> Duncan James McLauchlan<sup>2</sup>





limbic encephalitis and anti-voltage-gated potassium channel antibodies