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Summary
Background CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer’s disease pathology, but the 
invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical 
diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer’s 
disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer’s disease 
and for prediction of cognitive decline and hippocampal atrophy.

Methods We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was 
evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer’s disease 
and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older 
adults (mean age 63–69 years), participants with mild cognitive impairment (MCI), Alzheimer’s disease, and 
frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 
included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in 
Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological 
condition and patients referred from primary care physicians of the Canadian National Health Service for specialist 
care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal 
measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.

Findings We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second 
validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 
showed gradual increases along the Alzheimer’s disease continuum, from the lowest concentrations in amyloid β-negative 
young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively 
unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer’s 
disease groups (p<0·001, Alzheimer’s disease vs all other groups). Plasma p-tau181 distinguished Alzheimer’s disease 
dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults 
(AUC=90·21–98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia 
(AUC=82·76–100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal 
syndrome (AUC=88·47%), and Parkinson’s disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was 
associated with PET-measured cerebral tau (AUC=83·08–93·11% across cohorts) and amyloid β (AUC=76·14–88·09% 
across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary 
care cohort, plasma p-tau181 discriminated Alzheimer’s disease from young adults (AUC=100%) and cognitively 
unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).

Interpretation Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer’s disease from other 
neurodegenerative disorders, and identify Alzheimer’s disease across the clinical continuum. Blood p-tau181 could be 
used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer’s disease.
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Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.
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Introduction
More than 50 million people worldwide have dementia, 
and the cost of dementia care reached US$1 trillion in 
2018.1 Amyloid β and tau pathology are the defining 
pathological features of Alzheimer’s disease.2 In-vivo 

detection of these processes is central to disease 
diagnosis,3 its biological definition,4 and for selecting 
indi viduals for clinical trials.5 Although CSF and PET 
biomarkers of amyloid β and tau are highly accurate for 
detecting Alzheimer’s disease pathology, the costs and 
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low availability of the tools needed to detect these bio-
markers hamper their feasibility for use in clinical diag-
nostic practice and for screening in clinical trials.6 The 
access ibility and cost-effectiveness of blood-based bio-
markers make them attractive for  first-line clinical 
use and for facilitating clinical trial recruitment and 
monitoring.7 Blood neurofilament light chain, a marker 
of neuronal injury, is increased in Alzheimer’s dis-
ease,8 but this biomarker has low specificity, because 
abnormal increases are also reported in several other 
neurodegenerative dis orders, such as multiple system 
atrophy, corticobasal syndrome, and progressive supra-
nuclear palsy.9

Another advance in biomarkers for Alzheimer’s disease 
is the use of mass spectrometry-based assays for plasma 
amyloid β (ratio of amyloid β1–42 to amyloid β1–40), which 
reflects brain amyloidosis.10,11 However, these assays have 
limitations, including substantial peripheral amyloid β 
expression,12 which results in less pronounced decreases 
in the amyloid β1–42 to amyloid β1–40 ratio in plasma 
compared with CSF, and a larger overlap of amyloid β 
concentrations between individuals who are amyloid β 
PET-positive and PET-negative.10 Furthermore, brain 

amyloidosis is present in 10–30% of individuals who are 
cognitively unimpaired.13 By contrast, CSF tau phos-
phorylated at threonine 181 (p-tau181) is a highly specific 
pathological marker of Alzheimer’s disease that remains 
normal in other dem entias.14 Thus, a blood test for 
p-tau181 would be a major advance for diagnostics. Some 
previous studies using immunoassays targeting distinct 
tau species reported promising results for blood p-tau181 
as a bio marker for Alzheimer’s disease.15–18 How ever, 
some of these assays had insufficient analytical sensitivity 
for exam ining preclinical and cognitively unimpaired 
indi viduals, and it is unclear whether Alzheimer-specific 
tau pathology was detected.

In this study, we report the performance of an ultra-
sensitive immunoassay for blood p-tau181 that can 
be implemented for a practical assessment of in-vivo 
Alzheimer’s disease pathophysiology. We aimed to evaluate 
whether blood p-tau181 can: (1) differentiate Alzheimer’s 
disease dementia from no cognitive impairment, mild 
cognitive impairment (MCI) due to Alzheimer’s dis-
ease, and other neurodegenerative diseases; (2) reflect 
abnormalities in tau or amyloid PET scans; and (3) predict 
future cognitive decline and hippo campal atrophy.

Research in context

Evidence before this study
We searched PubMed for all articles published from database 
inception to Jan 20, 2020, without language restrictions, using 
the keywords “tau”, “phosphorylated tau”, “CSF tau”, 
“CSF biomarker”, “Alzheimer’s disease”, “plasma tau”, “amyloid”, 
“MRI”, “PET”, “cognitive decline”, and “hippocampal atrophy”. 
Previous attempts to develop a reliable blood assay for p-tau181 
have been challenging due to the very low concentrations in 
blood samples. Furthermore, initial unsuccessful efforts focused 
on applying established mid-region CSF p-tau181 
immunoassays directly to blood. Recent evidence has shown 
that tau in blood and CSF might be processed differently, with 
mainly N-terminal forms of tau present in measurable quantities 
in blood. A few studies, each targeting different tau species, 
have described blood p-tau181 immunoassays showing 
encouraging results in few patient cohorts. However, some of 
these assays lack the analytical sensitivity for examining 
cognitively unimpaired individuals, some of whom might be in 
the preclinical phase of Alzheimer’s disease. Moreover, it is 
unclear if previously described blood p-tau181 assays detect 
either Alzheimer-specific tau pathology similar to CSF p-tau181 
or tau pathology that is common to all neurodegenerative 
diseases, characterised by the presence of pathological tau.

Added value of this study
In this study, we present a blood-based immunoassay 
measuring p-tau181 on a novel N-terminal form of tau that is 
distinct from the mid-region forms targeted by the established 
CSF assays. This assay was validated to be specific for the 
p-tau181 site, does not capture non-phosphorylated tau 
species, and shows good diagnostic performance for 

Alzheimer’s disease in both plasma and serum. The blood 
p-tau181 assay identified Alzheimer’s disease at the very early 
stages of disease and demonstrated high diagnostic accuracy, 
with stepwise increases across the Alzheimer’s disease 
continuum. Similar to mid-region CSF p-tau181, our blood 
p-tau181 assay appeared to be specific to Alzheimer’s disease, 
differentiating it from other neurodegenerative diseases with 
high accuracy. Additionally, blood p-tau181 predicted cognitive 
decline and hippocampal atrophy over a period of 1 year, 
making it suitable as an Alzheimer’s disease progression marker. 
Furthermore, plasma p-tau181 performed better than the most 
well-known Alzheimer’s disease risk factors (age, APOE ε4 
genotype, or both) and other plasma biomarkers (total-tau, 
amyloid β1–42, amyloid β1–42 to amyloid β1–40 ratio, and 
total-tau to amyloid β1–42 ratio) in predicting Alzheimer’s disease 
diagnosis, increased tau PET, and increased amyloid β PET.

Implications of all the available evidence
The blood p-tau181 assay described in this study could represent 
the first simple, practical, and scalable test for the diagnosis of 
Alzheimer’s disease. This technology has applications for 
diagnosis and recruitment for disease-modifying trials. 
The blood p-tau181 assay has the potential to be incorporated 
into clinical practice as a rapid screening test to identify or rule 
out Alzheimer’s disease pathophysiology and to guide therapy 
and clinical management of patients with suspected 
neurodegenerative disorders. To facilitate widespread 
implementation of the blood p-tau181 assay, full clinical 
standardisation, including establishment of reference materials 
and methods to harmonise readouts across clinical laboratories, 
will be required.
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Methods
Study design and population
We developed a new analytical method for blood p-tau181 
and validated its performance for assessment of 
Alzheimer’s pathophysiology using four independent, 
prospective cohorts recruiting consecutive cases. The 
discovery cohort included patients with Alzheimer’s 
disease, with a typical Alzheimer’s disease core CSF 
biomarker profile (CSF amyloid β1–42 <530 ng/L, p-tau181 
>60 ng/L, and total-tau >350 ng/L19), and age-matched 
controls, who were patients examined at the memory 
or neurology clinics in the catchment area of the 
Sahlgrenska University Hospital (Gothenberg, Sweden) 
for minor neurological or psychiatric symptoms, and 
who had both basic and core CSF biomarker levels within 
normal ranges.

Two independent validation cohorts were evaluated, 
from the TRIAD (McGill University, Canada)20 and 
BioFINDER-2 (Lund University, Sweden)21 studies. 
Partici pants in both cohorts underwent detailed assess-
ments, including of CSF (amyloid β1–42, p-tau181, and 
total-tau) and PET (tau and amyloid β) biomarkers, and 
clinical and cognitive evaluations. Both cohorts included 
older people (>60 years) who were cognitively unimpaired, 
and par ticipants with MCI, Alzheimer’s disease dem-
entia, and fronto temporal dementia. Additionally, TRIAD 
included young adults (20–30 years), and BioFINDER-2 
included indi viduals with other neurodegenerative 
disorders. Amyloid β positivity in the TRIAD and 
BioFINDER-2 cohorts was independently determined 
using amyloid β PET uptake, on the basis of visual rating 
and a consensus of two neurologists blinded to the 
diagnosis for TRIAD,22 and mixture modelling techniques 
for BioFINDER-2 (appendix pp 6, 7).23

Finally, we tested the feasibility of using the assay as a 
rapid screening tool in a primary care cohort in Montreal, 
Canada, that included controls from the community 

without a diagnosis of a neurological condition and 
patients referred from primary care physicians of the 
Canadan National Health System for special ist care at 
the McGill University Research Centre for Studies in 
Aging (Montreal, Canada). These patients had received a 
clinical diagnosis in the primary care setting, but had not 
yet undergone biomarker and clinical assessments in 
specialist centres.

All studies were approved by the relevant ethics com-
mittees, and written informed consent was obtained for 
all participants when necessary. Further details about the 
study participants are provided in the appendix (pp 5, 6).

Outcomes
In the discovery cohort, CSF p-tau181, total-tau, and 
amyloid β1–42 were measured between Feb 1 and 
March 30, 2019, using Innotest ELISA assays from 
Fujirebio (Tokyo, Japan), as described previously.24 A 
biomarker-positive Alzheimer’s disease diagnosis was 
determined using previously defined cutoffs.19 The fully 
automated LUMIPULSE G1200 (Fujirebio) was used to 
measure CSF p-tau181, total-tau, and amyloid β1–42 for the 
TRIAD and primary care cohorts between Aug 1 and 
Dec 31, 2019. For the BioFINDER-2 cohort, Meso Scale 
Discovery assays (Meso Scale Diagnostics, Rockville, 
MD, USA) were used to measure CSF amyloid β1–42 and 
amyloid β1–40.

In the TRIAD cohort, individuals were assessed 
using 3T MRI as well as amyloid β [¹⁸F]AZD4694 PET 
and tau [¹⁸F]MK-6240 PET between April 1, 2017, and 
June 30, 2019. In the BioFINDER-2 cohort, individuals 
had MRI, amyloid β [¹⁸F]flutemetamol PET, and 
tau [¹⁸F]RO948 PET between May 1, 2017, and Oct 30, 2019. 
We segregated individuals into Braak staging groups 
based on in-vivo tau PET deposition in regions corres-
ponding to stages I–II, III–IV, and V–VI (postmortem 
Braak staging suggests that the accumulation of tau 

Discovery cohort (n=37) Primary care clinical cohort (n=105)

Cognitively 
unimpaired older 
adults (n=18)

Alzheimer’s disease 
(n=19)

Young adults 
(n=11)

Cognitively 
unimpaired older 
adults (n=72)

Mild cognitive 
impairment (n=12)

Alzheimer’s disease 
(n=10)

Age, years 63·8 (11·4) 74·4 (5·4)* 23·5 (2·0)* 70·0 (9·1)† 71·7 (10·5) 62·7 (13·6)*

Sex

Men 13 (72%) 9 (47%) 6 (55%) 23 (32%) 4 (33%) 6 (60%)

Women 5 (28%) 10 (53%) 5 (45%) 49 (68%) 8 (67%) 4 (40%)

APOE ε4 genotype ·· ·· 2/11 (18%) 23/69 (33%) 5/12 (42%) 4/10 (40%)

Education, years ·· ·· 17·8 (2·4) 15·1 (3·6) 14·1 (3·2) 13·0 (3·3)

CSF amyloid β1-42, pg/mL 842·2 (175·9) 388·9 (72·1)* ·· ·· ·· ··

CSF p-tau181, pg/mL 35·4 (10·1) 94·3 (28·6)* ·· ·· ·· ··

CSF total-tau, pg/mL 223·3 (68·7) 669·5 (255·5)* ·· ·· ·· ··

Data are mean (SD) or n (%). Cognitively unimpaired older adults in the discovery cohort additionally tested negative for the CSF core biomarkers (amyloid β, p-tau181, and 
total-tau). The individuals in the young adults group were cognitively unimpaired. Student’s t test (in the discovery cohort) or analysis of variance followed by Tukey’s post-
hoc test (in the primary care cohort) was done to identify significant differences between groups for continuous variables. For sex and APOE ε4 genotype, contingency χ² tests 
were done. p-tau181=tau phosphorylated at threonine 181. *p<0·05 compared with cognitively unimpaired older adults. †p<0·05 compared with Alzheimer’s disease.

Table 1: Characteristics of the discovery and primary care cohorts

See Online for appendix
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neurofibrillary tangles in Alzheimer’s disease follows a 
typical pattern that begins in the transentorhinal cortex 
[stage I–II], spreading to limbic [III–IV] and isocortical 
[V–VI] regions25). Tau PET standardised uptake value 
ratio was measured regionally in the tran sentorhinal 
(stage I–II), limbic (III–IV), and isocortical (V–VI) Braak 
regions, as previously described,26 as well as globally in a 
composite area including the whole cortex (Braak 
stage I–VI regions), and tau positivity defined as an SD of 
2·5 higher than the mean stand ardised uptake value ratio 

of older patients who are amyloid β-negative and 
cognitively unimpaired. Further details are provided in 
the appendix (pp 6, 7).

For individuals in TRIAD who had baseline plasma 
p-tau181 measures and baseline Mini Mental State 
Examination (MMSE) scores and structural MRI assess-
ments (n=226), we assessed the associations betwe en 
plasma p-tau181 and cognitive impairment and neuro-
degenerat ion at baseline. Furthermore, in individuals with 
baseline plasma p-tau181 as well as baseline and 1-year 
follow-up MMSE scores (n=85) and structural MRI 
assessments (n=88), we evaluated the associ ations between 
baseline plasma p-tau181 concentrations and 1-year longi-
tudinal change in cognitive function and neurode-
generation. Brain atrophy was measured by grey matter 
density on T1-weighted MRI images using voxel-based 
morphometry.

Predictors
Plasma p-tau181 for the four cohorts was measured 
in the Clinical Neurochemistry Laboratory, University 
of Gothenberg (MÖlndal, Sweden) during May to 
December, 2019, (one run for each cohort) in a blinded 
manner, on the Simoa HD-1 (Quanterix, Billerica, MA, 
USA). The AT270 mouse monoclonal antibody (MN1050; 
Invitrogen, Waltham, MA, USA) specific for the 
threonine-181 phosphorylation site27 was coupled to para-
magnetic beads (103207; Quanterix) and used for capture. 
This anti body recognises the tau sequence 176-PPAPKT(p)
P-182 phosphorylated specifically at threonine-181.28 As the 
detector, we used the anti-tau mouse monoclonal antibody 
Tau12 (806502; BioLegend, San Diego, CA, USA), which 
binds the N-terminal epitope 6-QEFEVMEDHAGT-18 
on human tau protein.29 Amino acid numbering follows 
that of the full-length tau 1-441 (Uniprot ID P10636-8). The 
detection antibody was conjugated to biotin (A3959; 
Thermo Fisher Scientific, Waltham, MA, USA) following 
the manufacturer’s recom mendations. Full-length recom-
binant tau1-441 phosphoryl ated in vitro by glycogen 
synthase kinase 3β (TO8–50FN; SignalChem, Vancouver, 
BC, Canada) was used as the calibrator. A detailed 
description of analytical procedures and assay validation is 
provided in the appendix (pp 7–9).

We used area under the curve (AUC) analyses to compare 
the ability of plasma p-tau181 and two of the most well 
known risk factors for Alzheimer’s disease (age, APOE ε4 
genotype, or both) to correctly identify Alzheimer’s disease 
diagnosis, increased amyloid β PET, and elevated tau PET 
uptake. APOE ε4 genotyping was done using the TaqMan 
real-time polymerase chain reaction assay exter nally at 
Applied Biosystems (Foster City, CA, USA). Further more, 
the performance of plasma p-tau181 to accurately identify 
Alzheimer’s disease diagnosis and increased amyloid β 
and tau PET was compared with other plasma biomarkers 
(total-tau, amyloid β1–42, amyloid β1–42 to amyloid β1–40 ratio, 
and total-tau to amyloid β1–42 ratio) using AUC analyses. 
Plasma total-tau, amyloid β1–42, and amyloid β1–40 were 
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measured using the Neuro 3-Plex A kit (101995; Quanterix), 
following the manufacturer’s instructions on the Simoa 
HD-1 instrument.

Statistical analysis
The prospective cohorts are continuously recruiting 
patients, and for this study we included all individuals and 
patients with samples available for analysis. Statistical 
analyses were performed using R version 3.1.2, MATLAB 
version 9.2 with VoxelStats package,30 and SPSS version 26. 
Only individuals with complete data were included in each 
specific analysis. Unpaired t-tests and analysis of variance 
with Tukey’s multiple comparisons test were used to 
compare continuous variables between groups. The χ² test 
was used to compare dichotomous variables between 
groups. Receiver operating curves (ROCs) comparing 
cohort subgroups provided the AUC for a diagnosis 
of Alzheimer’s disease or biomarker positivity. AUC, 
sensitivity, specificity, and the representative best value for 
accuracy at an optimal cutoff value were used to determine 
biomarker performance. Spearman’s rank correlation 
tested associations between biomarkers. No covariates 
were used in the aforementioned models. Linear regress-
ion models tested the associations between plasma 
p-tau181 and at baseline and 1-year change in cognition 
(MMSE score) and structural imaging (hippocampus grey 
matter density) data. The linear regressions were corrected 
for age, sex, APOE ε4 genotype, and years of formal 
education. p<0·05 was considered to indicate statistical 
significance. Further details of statistical analyses are 
provided in the appendix (p 9).

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. TKK, TAP, SJ, PR-N, and KB had access to all 
the data in the study and had final responsibility for the 
decision to submit for publication.

Results
We studied 37 individuals in the discovery cohort, 226 in 
the first validation cohort (TRIAD), 763 in the second 
validation cohort (BioFINDER-2), and 105 in the prim ary 
care cohort (total of 1131 individuals). Blood p-tau181 con-
centrations were not affected by sex. Demographic char-
acteristics are presented in tables 1 and 2, and in the 
appendix (pp 19, 20).

The blood p-tau181 assay (appendix p 10) showed high 
analytical performance (appendix p 21), with high precision 
within and between runs, and between different batches of 
reagents (appendix pp 22–24). Mass spectrometric studies 
showed that the assay specifically measures N-terminal to 
mid-domain forms of p-tau181, and does not recognise 
non-phosphorylated forms of tau (appendix p 11).

In the discovery cohort, the mean p-tau181 concentrations 
in paired serum and plasma samples were app roxi mately 
two-times and three-times higher, respectively, in CSF 

biomarker-positive patients with Alzheimer’s disease 
compared with controls (p<0·0001; figure 1A). p-tau181 
concentrations in paired serum and plasma were positively 
correlated (r=0·8202, p<0·0001; appendix p 12). p-tau181 
in both plasma and serum showed high performance for 
the diagnosis of Alzheimer’s disease (serum AUC=95·91%; 
plasma AUC=90·06%; figure 1B, appendix p 13), 
suggesting that plasma and serum are equally suitable for 
p-tau181 analysis.

In the TRIAD cohort, plasma p-tau181 was increased in 
the CSF amyloid β-positive Alzheimer’s disease group 
compared with all other diagnostic groups (p<0·0001; 
figure 1C). Plasma p-tau181 concentrations in amy loid 
β-positive cognitively unimpaired older adults and 
amyloid β-negative and amyloid β-positive individuals 
with MCI were higher than in young adults, individuals 
with frontotemporal dementia, and amyloid β-negative 
cognitively unimpaired older adults (p<0·05; figure 1C, 
appendix p 19). Plasma p-tau181 distinguished Alzheimer’s 
disease from frontotemporal dementia (AUC=100%), 
young adults and cognitively unimpaired older adults 
(AUC and accuracy >95%), and MCI (AUC >84% and 
accuracy >80%; figure 1D, appendix p 13). Plasma p-tau181 
distinguished amyloid β-positive cognitively unimpaired 
older adults from amyloid β-negative cognitively unim-
paired older adults (AUC=81·02%), and young adults 
(AUC=89·90%; appendix p 14).

In the BioFINDER-2 cohort, plasma p-tau181 con-
centrations gradually increased across the Alzheimer’s 
disease clinical continuum, with the lowest concentration 
in the CSF amyloid β-negative cognitively unimpaired 

Figure 1: Plasma p-tau181 concentrations in the four cohorts
In box-and-whisker plots the central horizontal bar shows the median p-tau181 concentration, and the lower and 
upper boundaries show the 25th and 75th percentiles, respectively. Graphs show receiver operating curves. Each 
AUC value indicates overall biomarker performance, with 50% indicating no difference from chance and 100% 
indicating a biomarker with sensitivity and specificity of 100%. Data are presented separately for the discovery 
cohort (A, B), the TRIAD cohort (C, D), the BioFINDER-2 cohort (E, F), and the primary care cohort (G, H). For 
illustrative purposes only, four individuals with cognitive impairment with high plasma p-tau181 concentrations 
(50–90 pg/mL) were not shown in panel E, but they were fully included in the statistical analyses. In panels D, F, 
and H, receiver operating curves are calculated versus Alzheimer’s disease. p values are indicated with asterisks: 
*p<0·05, **p<0·01, ***p<0·001, ****p<0·0001. Aβ=amyloid β. AUC=area under the curve. bvFTD=behavioural 
variant frontotemporal dementia. CBS=corticobasal syndrome. CU=cognitively unimpaired. FTD=frontotemporal 
dementia. MCI=mild cognitive impairment. MSA=multiple systems atrophy. p-tau181=tau phosphorylated at 
threonine 181. PD=Parkinson’s disease. PPA=primary progressive aphasia. PSP=progressive supranuclear palsy.
VaD=vascular dementia.
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older adults and amyloid β-negative MCI groups, 
an increased concentration in the amyloid β-positive cog-
nitively unimpaired older adult and amyloid β-positive 
MCI groups, and the highest concentration in the CSF 
amyloid β-positive Alzheimer’s disease group (p<0·0001 vs 
all other cognitively unimpaired and MCI groups; figure 
1E). Plasma p-tau181 distinguished Alzheimer’s disease 
from amyloid β-negative cognitively unimpaired older 
adults (AUC=90·21%) and amyloid β-negative MCI 
(AUC=86·51%; figure IF). Moreover, plasma p-tau181 
was increased in Alzheimer’s disease compared with 
several amy loid β-negative neurodegenerative dis-
orders (p<0·0001; figure 1E). Plasma p-tau181 dis tin-
guished Alzheimer’s disease from vascular dementia 
(AUC=92·13%), pro gressive supranuclear palsy or cortico-
basal syndrome (AUC=88·47%), behavioural variant 

fronto temporal dementia or primary progressive aphasia 
(AUC=82·76%), and Parkinson’s disease or multiple sys-
tems atrophy (AUC=81·90%; figure 1F). Comparisons 
with amyloid β-positive neurodegenerative disorders (ie, 
with con comitant Alzheimer’s disease-type pathology) are 
shown in the appendix (p 15).

In the primary care cohort, plasma p-tau181 concen-
tration increased progressively from young adults to 
cognitively unimpaired older adults, MCI, and clini-
cally diagnosed Alzheimer’s disease patients with 
unknown CSF and PET biomarker status (figure 1G). 
Plasma p-tau181 distinguished Alzheimer’s disease 
from young adults (AUC and accuracy=100%), cog-
nitively unimpaired older adults (AUC=84·44% and 
accuracy >90%), but not from MCI (AUC=55·00%; 
figure 1H, appendix p 13).

In the TRIAD cohort, plasma p-tau181 was strongly 
correlated with PET-measured tau ([¹⁸F]MK-6240 PET) 
across the cortex, with the highest association in the 
temporal lobe (figure 2A), and also with PET-measured 
amyloid β ([¹⁸F]AZD4694 PET) across the cortex, with the 
highest associations in the precuneus, frontal cortex, and 
striatum (figure 2B). Plasma p-tau181 strongly predicted 
tau PET positivity (AUC and accuracy >90%, figure 3A) 
and amyloid β PET positivity (AUC=88·09% and accuracy 
>80%, figure 3B). Additionally, plasma p-tau181 distin-
guished individuals who were PET positive for both tau 
and amyloid β from individuals who were negative for at 
least one of the PET biomarkers (AUC and accuracy 
>90%, figure 3C). Plasma p-tau181 correlated with tau 
PET uptake across all Braak stages (appendix p 16), and 
correlated better with both tau PET and amyloid β PET in 
amyloid β-positive cases than in amyloid β-negative 
individuals (figure 2). Plasma p-tau181 correlation with 
tau and amyloid β PET stratified by clinical diagnosis is 
shown in the appendix (p 25). Plasma p-tau181 increased 
with disease severity measured by tau PET uptake 
(figure 3D), and also correlated with duration of symptoms 
within the Alzheimer’s disease group, calculated as age at 
blood collection minus age of onset (r=0·3627, p=0·0252). 
Among tau PET-negative indi viduals (Braak 0), plasma 
p-tau181 distinguished amyloid β-positive from amy loid 
β-negative individuals (AUC=84·82% [data not shown]; 
figure 3E).

In the BioFINDER-2 cohort, plasma p-tau181 correl-
ated with PET-measured tau ([¹⁸F]RO948 PET) in 
amyloid β-positive individuals (Braak I–II, r=0·445; 
Braak III–IV, r=0·488; Braak V–IV, r=0·446; all p<0·0001). 
Plasma p-tau181 differentiated tau PET-positive indi viduals 
from tau PET-negative indivi duals with high accuracy 
(Braak I–II, AUC=83·08%; Braak III–IV, AUC=85·08%; 
Braak V–VI, AUC=84·70%; appendix p 17). Additionally, 
plasma p-tau181 was higher for amyloid β PET-positive 
cases than amyloid β PET-negative participants (p<0·0001).

In the discovery cohort, plasma and serum p-tau181 
(Simoa) were correlated with Innotest CSF p-tau181 
(r=0·7055, p<0·0001 for plasma; r=0·7937, p<0·0001 for 

Figure 2: Associations between plasma p-tau181 concentration and PET tau and amyloid β load
(A) Association between plasma p-tau181 and PET-measured tau ([¹⁸F]MK-6240 tau PET). (B) Association between 
p-tau181 and PET-measured amyloid β load ([¹⁸F]AZD4694 amyloid β PET). Brain images show the results of voxel-
wise regressions (false discovery rate corrected for multiple comparisons at p<0·05) overlaid on a structural MRI 
template. The strength of the association of plasma p-tau181 versus tau PET and amyloid β PET in different brain 
areas is shown in colour scales, with the areas with greatest association indicated in red. Graphs on the right show 
Spearman’s rank correlations between plasma p-tau181 and tau PET (PET [¹⁸F]MK-6240) or amyloid β PET ligand 
([¹⁸F]AZD4694) uptake (n=226). PET [¹⁸F]MK-6240 SUVR global values were estimated from Braak I–VI regions and 
[¹⁸F]AZD4694 SUVR global values were estimated from typical brain regions used to assess global PET amyloid β 
(appendix pp 6, 7). For tau PET, r=0·6280 and p<0·0001 for amyloid β-positive individuals, and r=0·1636 and 
p=0·0492 for amyloid β-negative individuals. For amyloid β PET, r=0·4454 and p<0·0001 for amyloid β-positive 
individuals, and r=0·2890 and p=0·0004 for amyloid β-negative individuals. p-tau181=tau phosphorylated at 
threonine 181. MCI=mild cognitive impairment. SUVR=standardised uptake value ratio.
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Figure 3: Plasma p-tau181 
concentration according to 
tau PET and amyloid β PET 
positivity
(A) Plasma p-tau181 
concentrations in tau 
PET-positive (n=45) and tau 
PET-negative (n=181) 
individuals. (B) Plasma 
p-tau181 concentrations in 
amyloid β PET-positive (n=81) 
and amyloid β PET-negative 
(n=145) individuals. 
(C) Plasma p-tau181 
concentrations in individuals 
who were positive for both tau 
PET and amyloid β PET (n=42) 
and individuals who were 
negative for at least one of 
these biomarkers (n=184). 
(D) Plasma p-tau181 
concentrations according to 
disease severity, as measured 
by tau PET Braak stages. (E) 
Plasma p-tau181 
concentrations in tau 
PET-negative participants 
(Braak stage 0) separated into 
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serum) and CSF amyloid β1–42 (r=–0·5936, p<0·0001 
for plasma, r=–0·6830, p<0·0001 for serum; appendix p 18). 
In the TRIAD cohort, plasma p-tau181 correlated with CSF 
p-tau181, measured with either LUMIPULSE or Simoa 
(appendix p 18). Simoa and LUMIPULSE CSF p-tau181 
were also correlated (r=0·8666, p<0·0001; appendix p 18). 
Simoa p-tau181 measured in paired plasma and CSF from 
the same individuals had a mean plasma p-tau181 to CSF 
p-tau181 ratio of around 5%.

Plasma p-tau181 was a better predictor of Alzheimer’s 
disease diagnosis and increased amyloid β PET than 
age, APOE ε4 genotype, or age and APOE ε4 genotype 
combined. Adding age and APOE ε4 status made marginal 
or no improvement to the predictive accuracies of plasma 
p-tau181 (appendix p 25). Similarly, plasma p-tau181 
predicted increased tau PET better than age, APOE ε4, or 
age and APOE ε4 status combined in all Braak regions 
when considering the entire cohort, as well as within the 
Alzheimer’s disease group and the non-dementia groups 

(Braak III-IV and V-VI; appendix p 26). In APOE 
ε4-stratified analysis, plasma p-tau181 was a better pre-
dictor of Alzheimer’s disease, increased amyloid β PET, 
and tau PET than age in both carriers and non-carriers of 
the APOE ε4 genotype (appendix pp 25, 26).

Plasma p-tau181 was a more accurate predictor of 
Alzheimer’s disease, increased amyloid β PET, and 
increased tau PET (Braak I–VI) than plasma amyloid β1–42, 
amyloid β1–42 /amyloid β1–40 ratio, total-tau, or 
total-tau/amyloid β1–42 ratio (appendix p 27).

A subset of individuals in the TRIAD cohort had 1-year 
follow-up structural MRI (n=88) and cognitive assessment 
(n=85). After correcting for age, sex, APOE ε4 genotype, 
and years of education, plasma p-tau181 correlated with 
both baseline (p<0·0001) and 1-year worsening (p=0·0015) 
in MMSE (figure 4A, B), and with both baseline (p<0·0001) 
and 1-year change (p=0·015) in hippocampal atrophy 
(figure 4C, D; analysis by diagnostic group is provided in 
the appendix, p 27).

Discussion
Our high-performance blood p-tau181 assay enabled the 
identification of brain tau pathology, showing increased 
concentrations of blood p-tau181 in individuals with 
amyloid β pathology who were tau PET-negative. More-
over, plasma p-tau181 provided high diagnostic accuracy 
for Alzheimer’s disease in four independent cohorts, 
discriminated amyloid β-positive cognitively unimpaired 
older adults and amyloid β-positive individuals with MCI 
from amyloid β-negative cognitively unimpaired older 
adults and young adults, and showed high performance 
in identifying clinically diagnosed Alzheimer’s disease 
patients with unknown brain amyloid status. Blood 
p-tau181 differentiated Alzheimer’s disease from several 
other neurodegenerative diseases with high performance. 
Additionally, blood p-tau181 pre dicted cognitive decline 
and hippocampal atrophy over a period of 1 year.

The specificity of p-tau181 to Alzheimer’s disease, as 
previously shown in CSF,14 was corroborated in the blood 
in the present study, making it a desirable biomarker for 
clinical use. Previous studies using plasma p-tau181 assays 
developed on different technology platforms have reported 
moderate accuracy of plasma p-tau181 in discriminating 
Alzheimer’s disease from non-dementia controls.15–18 
However, these previously reported assays have not been 
applied to large, independent cohorts including non-
Alzheimer’s neurodegenerative disorders. Therefore, it is 
unclear if any of these assays, each targeting a distinct 
form of tau, is specific to tau pathology in Alzheimer’s 
disease; one assay has shown similar increases in 
frontotemporal dementia, Parkinson’s disease, progress-
ive supranuclear palsy, and multiple system atrophy.31 
Two assays were not sensitive enough to measure p-tau181 
concentrations in many participants, including control 
participants.16,18 Furthermore, some assays were validated 
specifically for plasma,16,17 limiting the choice of matrix. 
The ultrasensitive assay presented in this study measures 

Figure 4: Association between plasma p-tau181 concentration and 1-year longitudinal neurodegeneration and 
cognitive decline
Left plots show data all individuals of the TRIAD cohort at baseline (n=226) and right plots show the subset who had 
1-year follow-up assessments (n=85 for cognition, n=88 for structural MRI). Cognition was assessed with the MMSE 
score (A, B) and hippocampal volume was assessed as a measure of grey matter density (C, D). For longitudinal 
changes in MMSE score (B) and hippocampus atrophy (D), lower scores represent cognitive decline and a decrease in 
hippocampal volume (neurodegeneration), respectively. CU=cognitively unimpaired. MCI=mild cognitive 
impairment. MMSE=Mini-Mental State Examination. p-tau181=tau phosphorylated at threonine 181.
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specific N-terminal p-tau181 species, as verified by mass 
spectrometry experiments, and the detection in CSF and 
strong correlations between blood and CSF concentrations 
of p-tau181 indicate that it specifically measures brain-
derived p-tau181. Of note, blood p-tau181 distinguished 
amyloid β-negative cognitively unimpaired older adults 
from amyloid β-positive cognitively unimpaired older 
adults and amyloid β-positive individuals with MCI, 
suggesting that plasma p-tau181 can model the entire 
Alzheimer’s disease continuum. Furthermore, similar to 
CSF p-tau181,32 blood p-tau181 separated Alzheimer’s 
disease from other neurodegenerative disorders with high 
accuracy, indicating that this assay might be a specific 
marker of tau pathology in Alzheimer’s disease. The assay 
distinguished Alzheimer’s disease from phenotypes of 
primary tauopathies, including progressive supranuclear 
palsy and corticobasal syndrome, both of which have tau 
pathology similar to that found in Alzheimer’s disease. 
The aforementioned results indicate that blood p-tau181 
could have the specificity and scalability required for 
effective population screening in Alzheimer’s disease.

The blood p-tau181 test showed high accuracy for 
predicting in-vivo tau tangles and a predictive power to 
detect amyloid β plaque-positive individuals that was 
similar to high-performance mass spectrometry-based 
amyloid β plasma assays.10,11 Of note, blood p-tau181 
identifies individuals with brain tau and amyloid β 
pathology with an AUC of up to 90%. The strong 
correlation between plasma p-tau181 and amyloid β PET, 
together with the increased plasma p-tau181 in amyloid 
β PET-positive and tau PET-negative (Braak 0) individuals 
suggests that this new test detects Alzheimer’s disease-
type pathology in the very early disease stages. This 
finding also suggests potential biological links between 
tau production and amyloid β plaques, in that plasma 
p-tau181 might detect a neuronal reaction to initial 
amyloid β aggregation,30 supporting the amyloid cascade 
hypothesis. The high accuracy of the blood p-tau181 
assay to identify brain tangle and plaque pathologies, 
both separately and combined, makes it an ideal 
biomarker in relation to the biological and clinical 
definitions of Alzheimer’s disease.4 The blood p-tau181 
assay thus represents a rapid method of identifying in-
vivo Alzheimer’s disease pathophysiology, and could 
become a cost-saving and time-saving first-line test for 
the evalu ation of patients with suspected Alzheimer’s 
dise ase, irrespective of disease stage. The overlap 
between partici pants with MCI and Alzheimer’s disease 
in the primary care cohort is likely to be driven by 
patients with MCI already having Alzheimer’s disease 
dementia phenotypes, which cannot be excluded in this 
cohort without detailed PET or CSF biomarker data. The 
multicentre design, the larger and more diverse popu la-
tion (compared with the other cohorts), and the different 
PET ligands used in BioFINDER-2 could account for 
the slightly lower AUCs for this cohort. Nonetheless, 
this cohort likely reflects the heterogeneous patient 

populations seen in the primary care clinic. The 
overall performance of blood p-tau181 in all cohorts 
studied indicates that this test is useful for supporting 
Alzheimer’s disease diagnosis.

The association between baseline blood p-tau181 and 
1-year cognitive deterioration, as well as hippocampal 
atrophy, suggest that the p-tau181 blood assay could also 
serve as a predictor of disease progression, and thus could 
be used to select individuals most likely to progress dur-
ing typically short clinical trial periods. The correla-
tion between plasma p-tau181 and PET-measure tau 
([¹⁸F]MK-6240 tau) in the TRIAD cohort showed almost a 
bimodal distribution, with p-tau181 increasing steeply 
within the cognitively unimpaired and MCI groups and 
plateauing in the Alzheimer’s disease group, despite 
increasing tau PET ligand retention. These findings 
suggest that plasma p-tau181 increases during the very 
early stages of tau pathology accumulation, supported by 
the high plasma p-tau181 in amyloid β PET-positive 
individuals who were still tau PET-negative (Braak stage 0). 
However, plasma p-tau181 does not appear to increase 
further in cases with moderate to severe tau pathology. 
Similarly, a previous study reported a poor correlation 
between p-tau181 and PET-measured tau ([¹⁸F]AV1451 tau 
PET) in Alzheimer’s disease dementia, but more robust 
correlations in amyloid β-positive cognitively unimpaired 
and MCI indi viduals.15 In contrast to tau PET, we showed 
high correlations between plasma and CSF p-tau181, irres-
pective of disease stage and the immunoassay method 
used, indicating that p-tau181 in both plasma and CSF 
directly reflects brain tau phosphorylation state, which 
might not directly translate to tau aggregation status 
measured by PET.

A previous study16 showed a modest correlation (r=0·45) 
between plasma p-tau181 and CSF p-tau181 (Innotest) in a 
small cohort (n=11). However, to our knowledge, no 
previous study has shown that the plasma analyte 
measured by a p-tau181 assay can also be measured in 
serum and CSF. Moreover, one study showed that plasma 
p-tau181 predicts increased amyloid β PET with an AUC 
of 80% in participants with no cognitive impairment, 
with MCI, and with Alzheimer’s disease combined,15 but 
did not show whether plasma p-tau181 predicts tau 
PET positivity. Another study, using a discontinued com-
mercial assay, reported poor performance for plasma 
p-tau181.18 By contrast, we showed that our plasma 
p-tau181 assay can predict amyloid PET and tau PET, and 
we validated these findings in two large cohorts, each 
using a distinct set of PET ligands. Furthermore, contrary 
to the immuno magnetic reduction p-tau181 assay,17,31 our 
blood p-tau181 assay appears to be specific to Alzheimer’s 
disease-type tau pathology, showing no significant 
increases in several other tauopathies. This finding 
empha  sises that not only is tau phosphorylation at 
threonine 181 important, but also that the species on 
which this phosphorylation site occurs is critical. Of note, 
blood p-tau181 has potential uses in three clinical settings: 
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primary care, clinical diagnosis, and in clinical trials. To 
our knowledge, we have shown for the first time that 
plasma and serum are similarly suitable for blood 
p-tau181 analysis.

The improved diagnostic performance of plasma 
p-tau181 compared with the most well known risk factors 
for amyloid deposition—age, APOE ε4, or both—suggest 
that use of this diagnostic test does not require prior 
knowledge of an individual’s age and APOE genotype. 
The higher performance compared with other plasma 
biomarkers indicates that our new assay extends the 
clinical diagnostic potential of blood biomarkers for 
Alzheimer’s disease.

Although our findings show that the blood p-tau181 
assay can identify Alzheimer’s disease in a primary care 
setting, the primary care cohort had no CSF or PET 
imaging assessments, precluding an aetiological diag-
nosis of individuals with MCI and identification of 
preclinical Alzheimer-type pathophysiology in cognitively 
normal older adults. These assessments would probably 
have reduced the overlap in p-tau181 concentrations 
between individuals with MCI and the Alzheimer’s 
disease group. Furthermore, our findings suggest that 
baseline plasma p-tau181 has potential clinical applica-
tions for prognosis and longitudinal monitoring, but the 
relatively short duration of the longitudinal evaluations 
and the small number of individuals with longi-
tudinal cognition and imaging biomarkers limits the 
interpretation of these results. 

In conclusion, our high-performance blood p-tau181 
assay could represent the first simple, practical and 
scalable test for the diagnosis of Alzheimer’s disease. This 
technology has applications for diagnosis and recruitment 
for disease-modifying trials. The blood p-tau181 assay has 
the potential to be incorporated into clinical practice 
as a rapid screening test to rule out Alzheimer’s disease 
pathophysiology and to guide therapy and clinical manage-
ment of patients with dementia.
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