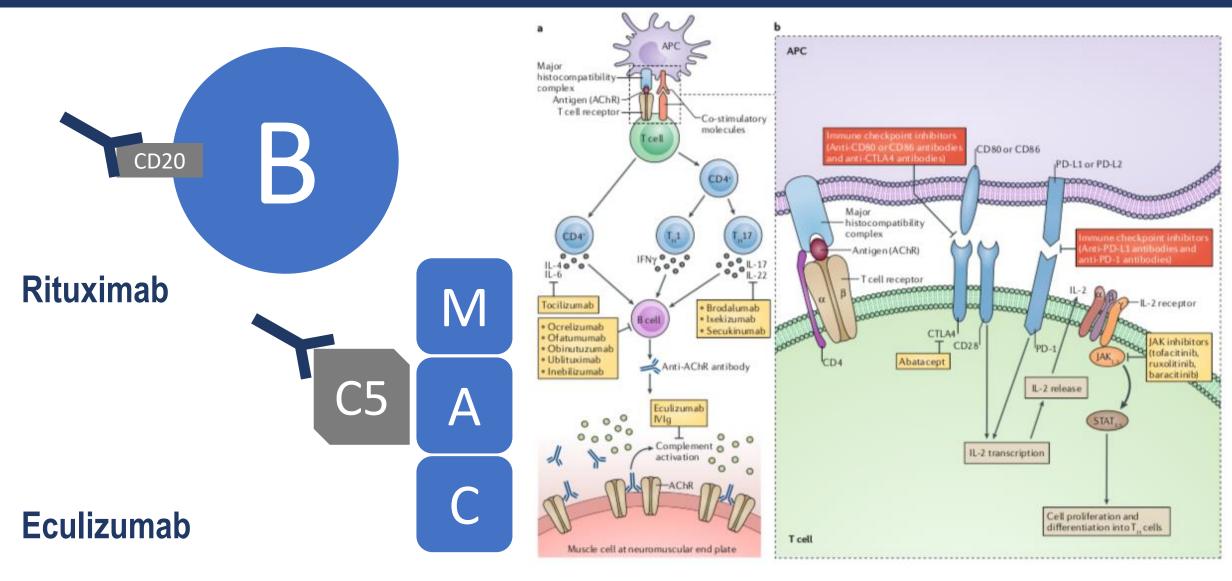


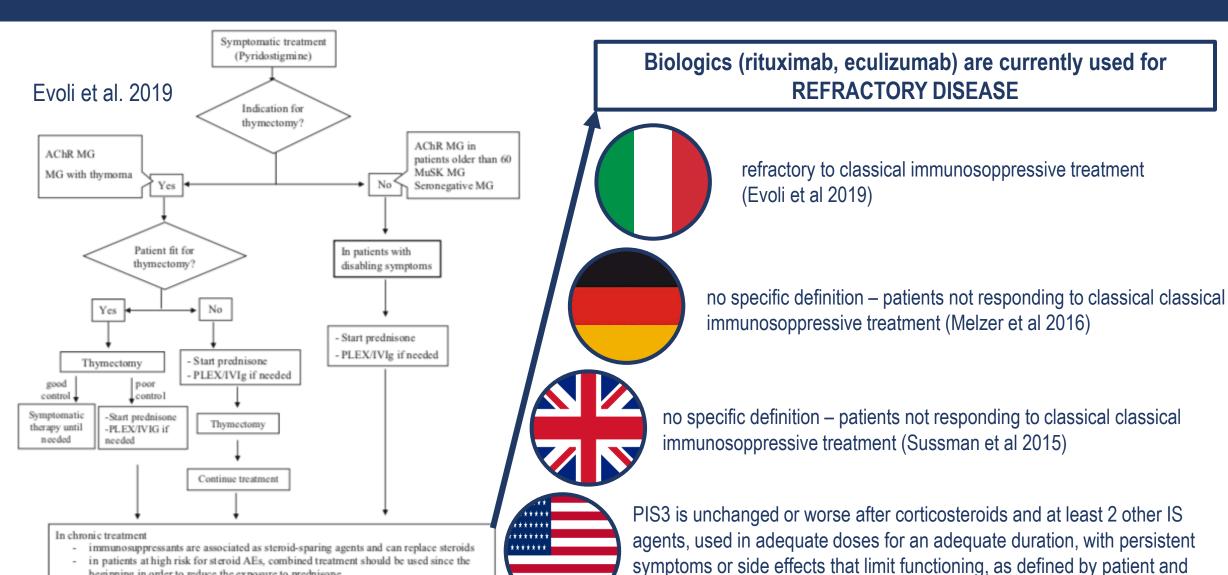
MYASTHENIA GRAVIS: EARLY TREATMENT WITH BIOLOGICS PROS



Alessandro Galgani

Scuola di Specializzazione in Neurologia Università di Pisa

BIOLOGICS IN MYASTHENIA GRAVIS


BIOLOGICS IN MYASTHENIA GRAVIS

Drug	Mechanism	Current state	Ref
Rituximab	CD20 Ab	Approved	Tandan et al 2017
Eculizumab	C5 Ab	Approved Phase III (REGAIN)	Howard et al 2017
Belimumab	BAFF Ab	Phase II trial	Hewett et al 2018
Efgartigimod	FcRn Ab	Phase II trial	Howard et al 2019
Ravulizumab	C5 Ab	Future phase III trial	McKeage 2019
Zilucoplan	C5 antagonist	Phase II	Beecher et al 2019
Tocilizumab	IL6R Ab	Case report	Jonsson et al 2017

BIOLOGICS IN THERAPEUTIC ALGORITHM

physician (Sanders et al 2016)

beginning in order to reduce the exposure to prednisone
 PLEX or IVIg can be used to treat disease deteriorations

biologics (rituximab, eculizumab) are currently used for refractory disease

RISK FACTOR FOR REFRACTORY MG

- 1. Failure to respond adequately to conventional therapies
- 2. Inability to reduce immunosuppressive therapy without clinical relapse or a need for ongoing rescue therapy such as intravenous immuno- globulin G (IVIg) or plasma exchange (PE)
- 3. Severe or intolerable adverse effects from immunosuppressive therapy
- 4. Comorbid conditions that restrict the use of conventional therapies
- 5. Frequent myasthenic crises even while on therapy

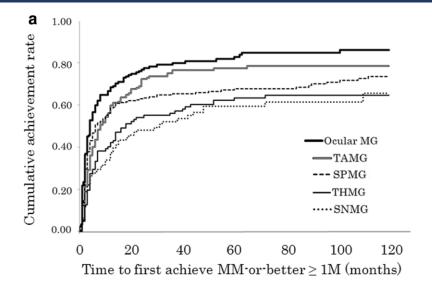
Parameter	Total (n = 128)	Nonrefractory $(n = 109)$	Refractory (n = 19)	p value*
Median age at onset, year (IQR)	55 (38–69)	60 (42–72)	36 (28-51)	< 0.001
Female	51%	47%	74%	0.03
Antibody status available	90%	88%	100%	
Anti-AChR positive	71%	75%	53%	0.05
Anti-MuSK positive	10%	2%	47%	< 0.001
Double seronegative	19%	23%	0	0.02
Thymectomy	24%	17%	68%	< 0.001
Thymoma status available	60%	61%	58%	
Thymomatous	18%	14%	45%	0.02
Non-thymomatous	82%	86%	55%	

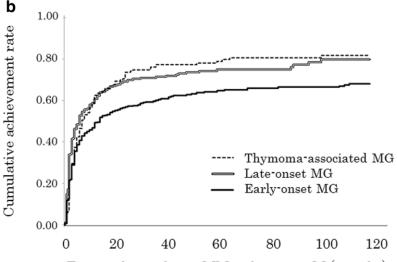
Adapted from Suh et al.11 with permission from The Yale School of Biology and Medicine.

Anti-AChR positive, anti-acetylcholine receptor antibody positive; anti-MuSK positive, anti-muscle-specific tyrosine kinase antibody positive; IQR, interquartile range.

Female

Young


MUSK+



^{*}For comparison between patients with refractory and nonrefractory myasthenia gravis.

RESPONSE RATE TO CLASSICAL MG THERAPY

	Ocular MG	Thymoma- associated MG	MG with thymic hyperplasia	AChR-Ab- negative MG	(MuSK-Ab -positive)	AChR-Ab-positive MG without thymic abnormalities	Total
Past immunotherapy (n = 923)							
Peak dose of oral PSL, mg/day	9.2 ± 122, 5.0 [†]	28.5 ± 18.8, 30.0 [†]	29.7 ± 19.4, 30.0 [†]	18.8 ± 17.2, 15.0	32.6 ± 20.6, 30.0	23.7 ± 20.2, 20.0	21.5 ± 19.3, 15.0
Duration of PSL ≥20 mg/day, M	0.0 ± 0.0, 0.0 [†]	12.0 ± 25.2, 5.0 [†]	$13.0 \pm 27.3, 6.0^{\dagger}$	3.8 ± 7.0, 0.0	7.2 ± 9.5, 4.0	8.2 ± 17.0, 2.0	7.9 ± 19.3, 1.0
CNIs,%	24.0%*	68.2%*	54.0%	67.4%	(72.7%)	58.1%	52.9%
PP,%	2.0%*	48.1%*	22.1%	46.0%*	(54.5%)	37.2%	27.3%
IVIG,%	6.1%*	36.1%	29.9%	42.5%*	(27.3%)	24.7%	15.0%
Initial response to treatment ($n = 92$.3, see Fig. 2a	<u>.</u>)					
Achievement of MM-or-better once,%	79.8%*	73.5%	66.1%	56.2%*	(75.0%)	67.8%	70.2%
Months to achieve MM-or-better in 50% of patients	4.0 [‡]	8.0	18.0 [‡]	31.0 [‡]	(7.0)	6.0	8.0
Stability of improved status ($n = 923$	ś)						
MM-or-better at present,%	74.0%*	58.1%	49.6%	39.6%*	(55.0%)	55.4%	57.6%
Maintaining rate of MM-or- better, %	92.7%*	79.0%	75.0%	70.5%	(73.3%)	81.7%	82.1%

Time to first achieve MM-or-better ≥ 1M (months)

Response to treatment of myasthenia gravis according to clinical subtype Akaishi et al. 2016 BMC Neurology

PRO # 1 - EFFICACY

INVITED REVIEW

RITUXIMAB TREATMENT OF MYASTHENIA GRAVIS: A SYSTEMATIC REVIEW

RUP TANDAN, MD, FRCP, MICHAEL K. HEHIR II, MD, WAQAR WAHEED, MD, and DIANTHA B. HOWARD, MS2

Accepted 28 Ianuary 2017

Table 3. Rituximab regimens and treatment effect in myasthenia occurs.					
	All MG (n = 169)	AChR MG (n = 99)	MuSK MG	P-value AChR vs. MuSk	
Rituximab induction regimen					
375 mg/m ² per week×4	135 of 168 (80%)	77 of 99 (78%)	48 of 57 (84%)	0.50	
500 mg days 1 and 14	14 of 168 (8%)	11 of 99 (11%)	3 of 57 (5%)		
Other	19 of 168 (12%)	11 of 99 (11%)	6 of 57 (11%)		
Rituximab follow-up regimen					
Cycles of rituximab	32 of 168	19 of 98 (19%)	12 of 57 (21%)	0.89	
(n, % cases) (n, range of cycles)	(19%) (1-4)*	(1-2)	(1-4)		
Infusions of rituximab (n, %)	75 of 131 (57%)	46 of 79 (58%)	25 of 45 (56%)	0.77	
(n, range of infusions,	(1-8, 1-25)	(1-8, 1-25)	(1-8, 1-9)		
range of intervals in months)	, ,	,	,,		
Total number of rituximab infusions/case	$6.8 \pm 3.7 \ (n = 167)$	$6.6 \pm 3.3 \ (n = 98)$	$7.1 \pm 4.2 (n = 57)$	0.49	
(initial + follow-up) (mean ± SD)					
Treatment effect					
PIS-m MM or better (n, %)	75 of 169 (44%)	30 of 99 (30%)	41 of 57 (72%)	< 0.001	
PIS-m CSR or PR (n, %)	45 of 169 (27%)	16 of 99 (16%)	27 of 57 (47%)	< 0.001	
Any relapse after rituximab (n, %)	26 of 101 (26%)	21 of 63 (33%)	4 of 29 (14%)	0.05	
Relapses after rituximab (n) (mean ± SD)	$0.4 \pm 0.9 \ (n = 100)$	$0.5 \pm 1.0 \ (n = 62)$	$0.2 \pm 0.6 \ (n = 29)$	0.04	
QMG score (mean ± SD)					
Number of cases	18	15	3		
Pre-rituximab	16.8 ± 5.5	17.7 ± 0.5	12.7 ± 4.5	0.15	
Post-rituximab	8.7 ± 6.9	9.9 ± 6.7	2.3 ± 4.0	0.08	
Change in score (absolute)	8.2 ± 5.1	7.7 ± 5.4	10.3 ± 2.5	0.44	
Change in score (%)	52.6 ± 33.1	45.9 ± 30.9	86.3 ± 23.8	0.05	

AChR, acetylcholine receptor; CSR, chronic stable remission; MM, minimal manifestations; MuSK, muscle-specific tyrosine kinase; MG, myasthenia gravis, PIS-m, postintervention scale—modified; PR, pharmacologic remission; QMG, quantitative myasthenia gravis.

A DitOne patient was noted to have received "several" cycles.

Eculizumab: A Review in Generalized Myasthenia Gravis

Sohita Dhillon¹

Analyses	Treatment	LSM rank ^a or LSM change from BL ^b in total scores at week 26 ^c			
		MG-ADL	QMG	MGC	MG-QOL15
Worst-rank ANCOVA					
Prespecified	ECU	56.6 ^d	54.7*	57.3	55.5*
	PL	68.3 ^d	70.7	67.7	69.7
		BGD - 11.7	BGD - 16.0	BGD - 10.5	BGD - 14.3
Post hoc sensitivity	ECU	54.8*	53.9**	56.1*	54.6*
	PL	70.2	71.6	69.0	70.6
		BGD - 15.4	BGD - 17.7	BGD - 12.9	BGD - 16.0
Kepeated-measures model					
Prespecified sensitivity analysis with IST as covariate	ECU	-4.1**	-4.6***	- 7.9*	- 13.8***
	PL	-2.3	- 1.7	-4.6	- 6.7
		BGD - 1.8	BGD - 2.9	BGD - 3.3	BGD - 7.1
Prespecified sensitivity analysis without IST as covariate	ECU	-4.2**	-4.6***	- 8.1*	- 12.6***
	PL	-2.3	-1.6	-4.8	- 5.4
		BGD - 1.9	BGD - 3.0	BGD - 3.3	BGD - 7.2

Published Ahead of Print on May 22, 2019 as 10.1212/WNL.00000000000007600

ARTICLE CLASS OF EVIDENCE

Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis

James F. Howard, Jr., MD, Vera Bril, MD, Ted M. Burns, MD, Renato Mantegazza, MD, Malgorzata Bilinska, MD, Andrzej Szczudlik, MD, Said Beydoun, MD, Francisco Javier Rodriguez De Rivera Garrido, MD, Fredrik Piehl, MD, PhD, Mariarosa Rottoli, MD, Philip Van Damme, MD, PhD, Tuan Vu, MD, Amelia Evoli, MD, Miriam Freimer, MD, Tahseen Mozaffar, MD, E. Sally Ward, PhD, Torsten Dreier, PhD, Peter Ulrichts, PhD, Katrien Verschueren, MSc, Antonio Guglietta, MD, Hans de Haard, PhD, Nicolas Leupin, MD, and Jan J.G.M. Verschuuren, MD, PhD, on behalf of the Efgartigimod MG Study Group

Neurology® 2019;92:e1-e13. doi:10.1212/WNL.0000000000007600

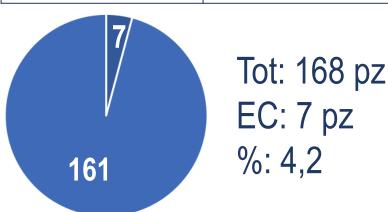
0 20 40 60 80 0 20 40 60 80 Study day Study day Orrespondence
Dr. Leupin

Dr. Leupin nleupin@argenx.com

Department of Neurological Sciences, University of Vermont, Robert Lamer College of Medicine and University of Vermont Medical Center, Room 426, Health Sciences Research Facility, 149 Beaumont Avenue, Burlington, Vermont 05405, USA

²Center for Clinical and Translational Science, University of Vermont, Robert Larner College of Medicine and University of Vermont Medical Center, Burlington, Vermont, USA

PRO # 2 - SAFETY


J Neurol DOI 10.1007/s00415-014-7532-3

REVIEW

Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis

Raffaele Iorio · Valentina Damato · Paolo Emilio Alboini · Amelia Evoli

Adverse effect	N° patients
Infections	4
Prolonged B cell depletion	2
Heart failure	1

Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, doubleblind, placebo-controlled, multicentre study

James F Howard Jr, Kimiaki Utsugisawa, Michael Benatar, Hiroyuki Murai, Richard J Barohn, Isabel Illa, Saiju Jacob, John Vissing, Ted M Bums, John T Kissel, Srikanth Muppidi, Richard J Nowak, Fanny O'Brien, Jing-Jing Wang, Renato Mantegazza, in collaboration with the REGAIN Study Group*

	Eculizumab (n=62)	Placebo (1≥63)	Total (n=125)
Patients with any treatment-emergent serious adverse event*	9 (15%)	18 (29%	27 (22%)
Myasthenia gravis	5 (8%)	8 (13%)	13 (10%)
Pyrexia	2 (3%)	0	2 (2%)
Upper respiratory tract infection	0	2 (3%)	2 (2%)
Apnoea	0	1(2%)	1(1%)
Bacteraemia	1(2%)	0	1(1%)
Acute cholecystitis	0	1(2%)	1(1%)
Deep-vein thrombosis	0	1(2%)	1(1%)
Diverticulitis	1(2%)	0	1(1%)
Endocarditis	1(2%)	0	1 (1%)
Gastritis	0	1(2%)	1(1%)
Gastroenteritis	0	1(2%)	1(1%)
General physical health deterioration	0	1(2%)	1(1%)
Hyperglycaemia	0	1(2%)	1(1%)
Intentional overdose†	0	1(2%)	1(1%)
Intestinal perforation	1(2%)	0	1(1%)
Lymphocyte count decreased	0	1(2%)	1(1%)
Lymphopenia	1(2%)	0	1 (1%)
Metastases to bone	1(2%)	0	1(1%)
Myasthenia gravis crisis	1(2%)	0	1 (1%)
Prostate cancer	1(2%)	0	1 (1%)
Dulmanary embelism	0	1 (211)	1 (111)
Tonsillitis	0	1(2%)	1(1%)
Bacterial urinary tract infection	0	1(2%)	1 (1%)
Varicella	0	1(2%)	1 (1%)

Foulizumah (n=62) Placebo (462) Total (n=120

Published Ahead of Print on May 22, 2019 as 10.1212/WNL.000000000007600 ARTICLE CLASS OF EVIDENCE

Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis

James F. Howard, Jr., MD, Vera Bril, MD, Ted M. Burns, MD, Renato Mantegazza, MD, Malgorzata Bilinska, MD, Andrzej Szczudlik, MD, Said Beydoun, MD, Francisco Javier Rodriguez De Rivera Garrido, MD, Fredrik Piehl, MD, PhD, Mariarosa Rottoli, MD, Philip Van Damme, MD, PhD, Tuan Vu, MD, Amelia Evoli, MD, Miriam Freimer, MD, Tahseen Mozaffar, MD, E. Sally Ward, PhD, Torsten Dreier, PhD, Peter Ulrichts, PhD, Katrien Verschueren, MSc, Antonio Guglietta, MD, Hans de Haard, PhD, Nicolas Leupin, MD, and Jan J.G.M. Verschuuren, MD, PhD, on behalf of the Efgartigimod MG Study Group

Neurology® 2019;92:e1-e13. doi:10.1212/WNL.0000000000007600

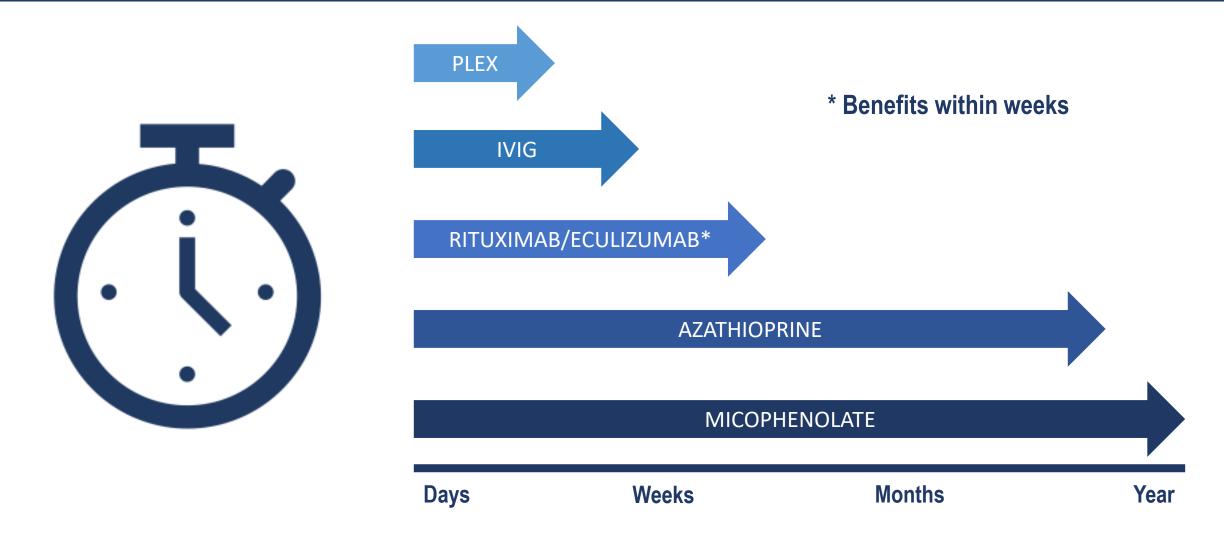
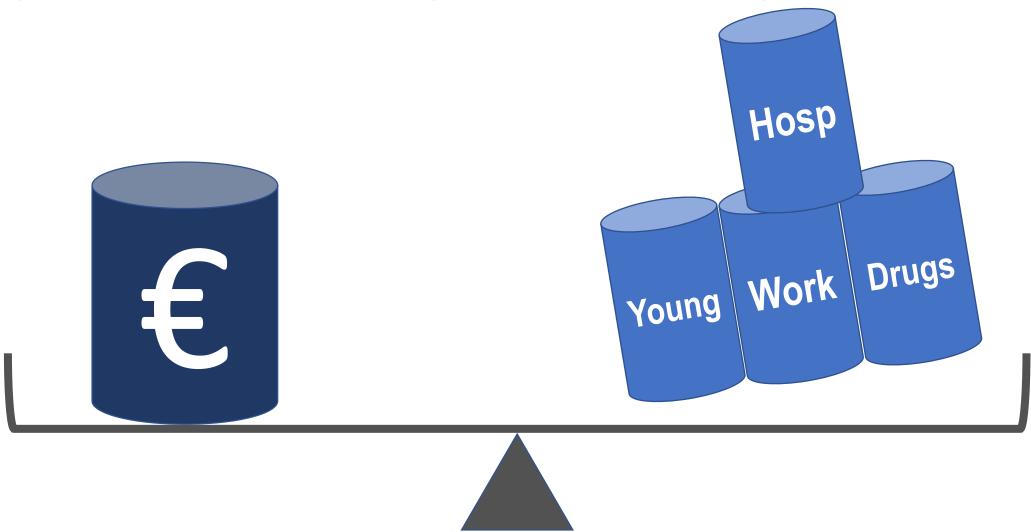

nleupin@argenx.com

Table 2 Treatment-emergent safety outcomes in all treated patients (overall reported in ≥2 patients)

TEAE/patient count	Placebo (n = 12)	Efgartigimod (n = 12)	Total (n = 24)
TEAEs (total)	10 (83.3)	10 (83.3)	20 (83.3)
Headache	3 (25.0)	4 (33.3)	7 (29.2)
Nausea	1 (8.3)	1 (8.3)	2 (8.3)
Diarrhea	1 (8.3)	1 (8.3)	2 (8.3)
Abdominal pain upper	1 (8.3)	1 (8.3)	2 (8.3)
Arthralgia	2 (16.7)	0 (0.0)	2 (8.3)
Total lymphocyte count decrease	0 (0.0)	2 (16.7)	2 (8.3)
B-lymphocyte decrease	0 (0.0)	2 (16.7)	2 (8.3)
Monocyte count decrease	0 (0.0)	2 (16.7)	2 (8.3)
Neutrophil count increase	0 (0.0)	2 (16.7)	2 (8.3)
Myalgia	0 (0.0)	2 (16.7)	2 (8.3)
Pruritus	2 (16.7)	1 (8.3)	3 (12.5)
Rhinorrhea	1 (8.3)	1 (8.3)	2 (8.3)
Tooth abscess	2 (16.7)	0 (0.0)	2 (8.3)
Toothache	2 (16.7)	0 (0.0)	2 (8.3)

Abbreviation: TEAE = treatment-emergent adverse event.Data are n (%).

PRO # 3 – TIME TO EFFECT



Myasthenia Gravis – Drachman 2016, Seminars in Neurology; Immunotherapy in myasthenia gravis in the era of biologics Dalakas, 2018 Nature Rev. Neurology

COSTS AND BENEFITS

Estimating the Population Benefits and Costs of Rituximab Therapy in the United States from 1998 to 2013 Using Real-World Data – Danese et al 2016 Medical Care

CONCLUSIONS

- A subgroup of patients suffering from MG may benefit from an early treatment with biologics
- This subgroup could be identified considering Ab sub-type (MUSK+), sex (female), age (30 y), disease severity and thymic abnormalities
- Biologics are showing to be effective drugs, producing remission or symptoms relief in a certain percentage of treated patients
- Reduction of MG relapses and myasthenic crisis frequences could be observed with biologics treatment
- The costs/benefits analysis may be in favour for a wider administration of these drugs

Thank you for your attention!

Alessandro Galgani

Scuola di Specializzazione in Neurologia Università di Pisa

