Update Nella Diagnostica Molecolare Nelle Malattie da Prioni e Prion-like

Gianluigi Zanusso

Department of Neuroscience, Biomedicine and Movement Sciences

University of Verona E-mail: gianluigi.zanusso@univr.it

Riunione della Sezione Triveneto Società Italiana di Neurologia Cittadella, 17 Maggio 2019

Human Prion Diseases

Human Prion Diseases

Sporadic Creutzfeldt-Jakob Disease

Sporadic Creutzfeldt-Jakob Disease (sCJD)

Fatal Neurodegenerative disorder with a disease duration of less than 24 months

Clinically characterized by a rapidly progressive dementia, with visual, cerebellar, pyramidal or extrapyramidal signs, myoclonus.

Invariably evolving to akinetic mutism

- Diagnostic tools:
- EEG: Typical PSWCs
- CSF: Positive 14-3-3 protein or Prion detection by RT-QuIC assay
- MRI: High signal abnormailities in basal ganglia or at least two cortical regions either in DWI or FLAIR
- PRNP: codon 129 polymorphism
- Definite Diagnosis is based on demonstration of pathological PrP (PrP^{sc}) in the nervous tissue

Probable Diagnosis

PrP^{Sc} detection by immunoblot and immunocytochemistry

Influence of polymorphism Met/Val at codon 129 on Sporadic CJD susceptibility

Codon 129	Met/Met	Met/Val	Val/Val
Normal population	40 %	50 %	10 %
sCJD	75 %	10 %	15 %

Determine susceptibility to prionsClinical disease modifier

Direttore: Dr. A. Mazza

Clinica delle Malattie Nervose e Mentali dell'Università di Roma Direttore: Prof. Mario Gozzano

Istituto di Anatomia ed Istologia Patologica dell'Università di Roma Direttore inc.: Prof. ANTONIO ASCENZI

GIOVANNI ALEMA'

10:10

AMICO BIGNAMI

Polioencefalopatia degenerativa subacuta del presenio con stupore acinetico e rigidità decorticata con mioclonie

(Varietà "mioclonica" della malattia di Jakob-Creutzfeld)

Reggio Emilia ISTITUTO NEUROPSICHIATRICO DI S. LAZZARO E D I T R I C E - A G E Clinical Variants of Sporadic Creutzfeldt-Jakob Disease based on Clinical Onset

Classic: Cognitive Impairment,

Ataxia, Myoclonus

Heidenhain: Visual Disturbances

and Hallucinations

> Oppenheimer-Brownell or Ataxic:

Ataxia

Cognitive: Cogntive Impairment,

language and executive functions

Affective: Depression

Amyotrophic

MRI Lesion patterns in sCJD

A tale of conversion of a "good" prion into a "bad" prion

Pathological Prion Protein

The *Conditio sine qua non* is the presence of Cellular Prion Protein

"Domino-like" Prion replication

Different Prion Conformers Act as «Strains»

Principles of Prion Seeding Assays

Principles of Prion Seeding Assays

Diagnostic testing for CJD: PMCA vs RT-QuIC

Zanusso et al. 2016 NATURE REVIEWS | NEUROLOGY

Pros vs Cons PMCA RT-QuIC

- Pros Highly specific and sensitive
- Cons Provision of fresh brain tissue with PrP homologous to the testing sample
- Cons Low efficiency for sCJD prions
- Cons Time consuming (each round lasts 24-48 hours)
- Cons Technically demanding performed in few laboratories
- Cons Generation of Infectious prion, even spontaneosuly

- Pros Highly specific and sensitive
- Pros recPrP as substrate (non necessarily homologous) strains amplification is allowed by different recPrP
- Cons Low efficiency for vCJD prions
- ✓ Pros Rapid (hours), low cost
- Pros Set up in different laboratories without special training
- ✓ Pros Do not generate infectious prions

Real Time-Quaking Induced Conversion (RT-QuIC) In **Creutzfeldt-Jakob Disease** Diagnosis

Real Time Quaking-Induced Conversion Analysis of Cerebrospinal Fluid in Sporadic Creutzfeldt–Jakob Disease

Lynne I. McGuire, PhD,¹ Alexander H. Peden, PhD,¹ Christina D. Orrú, PhD,² Jason M. Wilham, PhD,² Nigel E. Appleford, Cbiol,³ Gary Mallinson, PhD,³ Mary Andrews, BSc,¹ Mark W. Head, PhD,¹ Byron Caughey, PhD,² Robert G. Will, FRCP,¹ Richard S. G. Knight, FRCP,¹ and Alison J. E. Green, PhD¹

TABLE: The Sensitivity, Specificity, PPV, NPV, and Efficiency for Cerebrospinal Fluid RT-QuIC and 14-3-3 in Neuropathologically Confirmed sCJD for the Exploratory and Confirmatory Groups

	Explorat Grou	Exploratory Co Group		up	Bo Gro	oth ups
	RT-QuIC	14-3-3	RT-QuIC	14-3-3	RT-QuIC	14-3-3
sCJD	51/56	52/56	58/67	64/67	109/123	116/123
sCJD controls	1/52	23/52	0/51	13/51	1/103	36/103
Sensitivity, all	91%	93%	87%	96%	89%	94%
Sensitivity, MM	90%	97%	90%	93%	90%	95%
Sensitivity, MV	88%	82%	88%	100%	88%	95%
Sensitivity, VV	100%	100%	92%	100%	95%	100%
Specificity	98%	56%	100%	75%	99%	65%
PPV	98%	69%	100%	83%	99%	76%
NPV	91%	88%	85%	93%	88%	91%
Efficiency	94%	75%	92%	86%	93%	81%

Figures are given for each of the *PRNP* codon 129 genotypes of sCJD (MM, homozygous for methionine; MV heterozygous for methionine and valine; VV, homozygous for valine). The figures given are the number of positive or negative results over the total number of samples investigated. Efficiency was defined as: (true positives + true negatives)/total number tested. NPV = negative predictive value; PPV = positive predictive value.

ANN NEUROL 2012;72:278-285

January/February 2015 Volume 6 Issue 1 e02451-14

Disease Using Cerebrospinal Fluid

CrossMark

PQ-CSF vs IQ-CSF assay

- 100% specificity
- Sensitivity increases from 70% to ~ 94%
- 24 Hours test

Rapid and Sensitive RT-QuIC Detection of Human Creutzfeldt-Jakob

Christina D. Orrú, a Bradley R. Groveman, Andrew G. Hughson, Gianluigi Zanusso, Michael B. Coulthart, Byron Caugheya

Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton,

JAMA Neurology | Original Investigation

Diagnosis of Human Prion Disease Using Real-Time Quaking-Induced Conversion Testing of Olfactory Mucosa and Cerebrospinal Fluid Samples

Matilde Bongianni, PhD; Christina Orrù, PhD; Bradley R. Groveman, PhD; Luca Sacchetto, MD; Michele Florini, PhD; Giovanni Tonoli, MD; Giorgio Triva, BS; Stefano Capaldi, PhD; Silvia Testi, PhD; Sergio Ferrari, MD; Annachiara Cagnin, MD, PhD; Anna Ladogana, MD; Anna Poleggi, PhD; Elisa Colaizzo, MD; Dorina Tiple, MD; Luana Vaianella, MD; Santina Castriciano, BS; Daniele Marchioni, MD; Andrew G. Hughson, MS; Daniele Imperiale, MD; Tatiana Cattaruzza, MD, PhD; Gian Maria Fabrizi, MD; Maurizio Pocchiari, MD; Salvatore Monaco, MD; Byron Caughey, PhD; Gianluigi Zanusso, MD, PhD

Figure 1. Olfactory Mucosa (OM) Sample Collection and Results of Real-Time Quaking-Induced Conversion (RT-QuIC) Assays

C Mean RT-QuIC kinetics

D Mean peak ThT fluorescence readings

Diagnostic algorithm in Suspected Human Prion Disorder

Atypical sCJD cases 129MV

	Case 1	Case 2
Age	56 years	65 years
	Male	Male
Disease onset	Transient diplopia	Paroxysmal episodes of
		light-headedness
Clinical evolution	6 months later transient dizziness	16 months later behavioural visual and spatial disturbances, executive
	Mild ataxia	functions and memory impairment
N		
EEG	Not specific	Not specific
EEG MRI	Not specific Hyperintense signal in	Not specific Hyperintense signal in
EEG MRI	Not specific Hyperintense signal in fronto-parietal cortexes	Not specific Hyperintense signal in Frontal temporal and parietal cortexes
EEG MRI CSF	Not specific Hyperintense signal in fronto-parietal cortexes 14-3-3 Negative	Not specific Hyperintense signal in Frontal temporal and parietal cortexes 14-3-3 Negative
EEG MRI CSF	Not specific Hyperintense signal in fronto-parietal cortexes 14-3-3 Negative Tau 294 pg/mL	Not specific Hyperintense signal in Frontal temporal and parietal cortexes 14-3-3 Negative Tau 266 pg/mL
EEG MRI CSF RT-QuIC	Not specific Hyperintense signal in fronto-parietal cortexes 14-3-3 Negative Tau 294 pg/mL Positive in CSF and OM	Not specific Hyperintense signal in Frontal temporal and parietal cortexes 14-3-3 Negative Tau 266 pg/mL Positive in CSF and OM
EEG MRI CSF RT-QuIC PRNP	Not specific Hyperintense signal in fronto-parietal cortexes 14-3-3 Negative Tau 294 pg/mL Positive in CSF and OM No mutation	Not specific Hyperintense signal in Frontal temporal and parietal cortexes 14-3-3 Negative Tau 266 pg/mL Positive in CSF and OM No mutation

Case #1

Atypical sCJD cases 129MV

	Case 1	Case 2
Age	56 years	65 years
	Male	Male
Disease onset	Transient diplopia	Paroxysmal episodes of
		light-headedness
Clinical	6 months later transient	16 months later behavioural visual and
evolution	dizziness	spatial disturbances, executive
	Mild ataxia	functions and memory impairment
EEG	Not specific	Not specific
MRI	Hyperintense signal in	Hyperintense signal in
	fronto-parietal cortexes	Frontal temporal and parietal cortexes
CSF	14-3-3 Negative	14-3-3 Negative
	Tau 294 pg/mL	Tau 266 pg/mL
RT-QuIC	Positive in CSF and OM	Positive in CSF and OM
PRNP	No mutation	No mutation
	129 MV	129 MV

Case # 2

Clinical signs	None	None	None	Dementia
Neuropsychological assessment	ND	Impaired face recognition	Mild visuo-spatial deficits	Pathological
CSF	ND	PQ-QuIC Negative	14.3.3 Negative PQ-QuIC: Negative OM Negative	14.3.3 Negative, Tau: 266 pg/mL IQ-QuIC: Positive OM Positive

Protein Misfolded Cyclic Amplification (PMCA) In Variant **Creutzfeldt-Jakob Disease** Diagnosis

Variant CJD cases Worldwide

Year of Onset

Disease phenotype of vCJD 129MM

Mean age of onset	29 years
Disease Duration	14 months
Clinical disease	Early psychiatric symptoms Painful sensory symptoms Cerebellar ataxia Dementia in the late course
EEG	Not specific
MRI	Typical hyperintense signal in pulvinar
CSF	14-3-3 positive in 50%
Other tests	Tonsil biopsy
PrPTSE Glycotype Neuropathology	Type 2B Florid plaques

PrP

Type 1 Type 2A Type 2B

Which Success in Human Prion Diseases

Variant Creutzfeldt–Jakob Disease in a Patient with Heterozygosity at *PRNP* Codon 129

to.

Mok et al. N ENGLJ MED 376;3 NEJM.ORG JANUARY 19, 2017

Age of onset	36 years	A		B SCIDISCIDISCIDIAN
Disease Duration	15 months		ARE	98 – 64 –
Clinical disease	Behavioural changes Memory decline			50 - 36 - 30 -
	Ataxia, cerebellar signs Myoclonus	50.0		16-
EEG	Not specific			6 -
MRI	Basal ganglia, insula and medial thalami			+ + + +
CSF	14-3-3 negative	÷		
	RT-QuIC negative	Service of		
PrPTSE Glycotype	Type 2B		•	
	Spleen positive	213 20		
Neuropathology	Florid plaques	A	B	C

Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 24, No. 7, July 2018

Table. Analysis of CSF samples from patients with CJD and controls by PMCA*

	No. patients wi	th positive de	etection of	PrP ^{⊤SE} in	
	CSF and co	don 129 gen	otype/no. t	tested	
Diagnosis	Total	MM	MV	VV	Analytical performance, % (95% CI)
Clinical CJD		•	•	•	
Variant CJD	40/41†	37/38	1/1	NA	Diagnostic sensitivity 97.6 (87.1–99.9)
Definite	29/29	28/28	1/1	NA	
Probable	10/11	8/9	NA	NA	
Possible	1/1	1/1	NA	NA	
Sporadic CJD	0/23†	0/7	0/12	0/3	Analytic specificity 100 (93.7–100)
Definite	0/14	0/2‡	0/10	0/1‡	
Probable	0/9	0/5	0/2	0/2	
Genetic CJD	0/1	0/1	NA	NA	Analytic specificity 100 (93.7–100)
Non-CJD		•	•		Analytic specificity 100 (93.7-100)
Alzheimer's disease	0/12	ND	ND	ND	
Other nonneurodegenerative diseases	0/21	ND	ND	ND	

*CJD, Creutzfeldt-Jakob disease; CSF, cerebrospinal fluid; MM, methionine homozygous; MV, methionine/valine heterozygous; NA, not available; ND, not determined; PMCA, protein misfolding cyclic amplification; PrP^{TSE}, abnormal prion protein; VV, valine homozygous.

†Genotyping of the prion protein gene at codon 129 was not conducted for 2 patients with variant CJD and 1 patient with sporadic CJD.

The protease-resistant protein subtype was available for 3 patients with definite sporadic CJD and showed an equal distribution of MM1, MM2a, and VV2a.

Suspected Human Prion Disorder

The origin of Misfolded Disorders

Alois Alzheimer (1864-1915) Neurofibrillary Tangles, 1911 Friedrich Henrich Lewy (1885-1950) Images of Lewy Bodies (1923)

Friedrich Pick (1854-1924) Pick Bodies (1912)

Cerebrospinal Fluid Biomarkers

Neurodegenerative Dementias	Disease Associated Proteins	CSF Measurement Specificity and Sensitivity
Alzheimer's Disease	Amylod beta / Tau	High
Dementia with Lewy Bodies	Alpha-Synuclein	Low
Frontotemporal Dementia	Tau	Low
Fronto-temporal Dementia and ALS	TDP43	Low

Aβ processing in the Brain and CSF changes

Oligomer Detection by ELISA

Principle of Oligomer Seeding Assays

Why Use Oligomer Seeding Assays in Neurodegenerative Disorders

✓ Identify oligomers

✓ Diagnostic purposes

Define the Molecular basis of a Neurodegenerative Disorder

Prognostic purposes

Amyloid-Beta oligomers extent influences the progression of cognitive decline Define a Parkinsonism since the disease disability varies among different phenotypes

✓ Potential therapeutic approaches

Experimental procedure of Tau RT-QuIC

ORIGINAL PAPER

CrossMark

Stefano Michele Capaldi Matilde Fiorini Bongianni

Alfa-

Synuclein

Alpha-Synucleinopathies and Disease Phenotypes

- Parkinson Disease
- Mutiple System Atrophy
- Lewy Body Dementia
- ✓ Pure Autonomic Failure

Lewy Body Pathology

R Annu. Rev. Pathol. Mech. Dis. 6:193–222

Prion-Like Propagation of Alpha-Synuclein aggregates

- Patients with PD 10-14 years after trapiantation of fetal midbrain showed alpha-synuclein inclusions in 2-5% grafted neurons at neuropathological examination
- Alpha-synuclein is detected in a non aggregated form after 4 yrs and in aggregated form after 14 yrs
- After 24 yrs 11-12% of grafted neurons exhibited alpha-synuclein inclusions

Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson's disease

ncephalic tissue

rsed as a source of fissue

One to eight donor embryos

Jeffrey H Kordower¹, Yaping Chu¹, Robert A Hauser², Thomas B Freeman³ & C Warren Olanow⁴

NATURE MEDICINE VOLUME 14 | NUMBER 5 | MAY 2008

Fresh or hibernated tissue is

or small tissue pieces

homogenised into cell suspension

Stereotactic injection in caudal

Three to eight injection tracts pe

and/or putament

Immunosuppression Ckiosporin for 6 months or long-term triple drug therapy (ckiosporin, a: athioprine, predinisolone) to prevent rejection

Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation

Jia-Yi Li¹, Elisabet Englund², Janice L Holton³, Denis Soulet¹, Peter Hagell⁴, Andrew J Lees³, Tammaryn Lashley³, Niall P Quinn⁵, Stig Rehncrona⁶, Anders Björklund⁷, Håkan Widner⁴, Tamas Revesz^{3,9}, Olle Lindvall^{4,8,9} & Patrik Brundin^{1,9}

Seeding assays for α -synuclein

of Clinical and Translational Neurology

Open Access

BRIEF COMMUNICATION

Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies

Graham Fairfoul¹, Lynne I. McGuire¹, Suvankar Pal^{1,2}, James W. Ironside¹, Juliane Neumann³, Sharon Christie⁴, Catherine Joachim⁴, Margaret Esiri⁴, Samuel G. Evetts³, Michal Rolinski³, Fahd Baig³, Claudio Ruffmann³, Richard Wade-Martins⁵, Michele T. M. Hu³, Laura Parkkinen³ & Alison J. E. Green¹

	Number of positive	Number of positive	Number of positive
	using 5 µL	using 10 µL	using 15 µL
Exploratory patient group (n)			
AD with inddental LB (13)	2 (15%)	4 (31%)	2 (15%)
Healthy Controls (20)	0 (0%)	0 (0%)	0 (0%)
Mixed DLB/AD (17)	9 (53%)	11 (65%)	11 (65%)
Parkinson's disease (2)	2 (100%)	2 (100%)	2 (100%)
Progressive supranuclear palsy (2)	0 (0%)	0 (0%)	0 (0%)
Corticobasal degeneration (3)	0 (0%)	0 (0%)	0 (0%)
Pure AD (30)	2 (7%)	1 (3%)	0 (0%)
Pure DLB (12)	10 (83%)	11 (92%)	11 (92%)
Sensitivity (DLB)	83%	92%	92%
Specificity (vs. controls)	100%	100%	100%
Specificity (vs. AD)	93%	97%	100%
Specificity (vs. controls + AD)	96%	98%	100%
Confirmatory patient group (n)			
Parkinson disease (20)	_	-	19 (95%)
At-risk PD patients (3)	_	_	3 (100%)
Parkinson's disease controls (15)	_	_	0 (0%)
Sensitivity (PD)	_	_	95%
Specificity	_	_	100%

A positive RT-ASA response was classified as a relative fluorescence unit (rfu) value of >2SD above the mean of the negative controls at 120 h of at least one of the CSF duplicates.

Acta Neuropathologica Communications

METHODOLOGY ARTICLE

Open Access

() CrocsMark

Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC

Bradley R. Grovernan^{1†}, Christina D. Orrù^{1†}, Andrew G. Hughson¹, Lynne D. Raymond¹, Gianluigi Zanusso², Bernardino Ghetti³, Katrina J. Campbell¹, Jiri Safar⁴, Douglas Galasko^{5*} and Byron Caughey^{1*}[†]

Table 1 Demographic data and cognitive impairment at the time of lumbar puncture (LP) in studied subjects

Final diagnosis	n	Age at onset (years)	Age at LP (years)	Mean interval between onset and LP (years)
Dementia with Lewy Bodies	17	69.6 ± 7.8	73.8 ± 7.8	42
Parkinson's Disease	12	63.1 ± 12.0	66.0 ± 12.9	2.9
Alzheimer's Disease	16	69.9 ± 9.1	73.9 ± 9.1	4
Control ^b	12	n/a	71.3 ± 7.0	n/a
Other ^b	3	65.7±11.4	67.7 ± 10.7	2

CSF samples RT-QuIC testing by K23Q α -syn substrate

Alpha-Synuclein and Prion RT-QuIC in CSF of Definite Cases

100

80

20

Maximum ThT Response %

Definite diagnosis	Final clinical diagnosis*	CSF RT-QuIC		
Definite diagnosis	(before RT-QuIC)	PrP	α-syn	
Alpha Synucleinopathies (n=10)		0/10	10/10	
	Probable DLB (n=4)			
DLB (n=7)	Possible DLB (n=1)	0/7	7/7	
	Possible CJD (n=2)			
AD/DLB (n=2)	Probable DLB (n=1)	0/2	2/2	
$MSA_{-}C(n-1)$	Possible CJD (n=1)	0/1	1/1	
Prion diseases (n=20)		20/20°	0/20	
	Probable CJD (n=16)		0,20	
Sporadic CJD (n=19)	Rapidly progressive dementia (n=3)	19/19°	0/19	
Genetic CJD, E200K (n=1)	Probable CJD (n=1)	1/1	0/1	
Other neurodegenerative diseases (า=8)	0/8 0		
	Probable DLB (n=1)			
AD (n=4)	Possible CJD (n=2)	0/4	0/4	
	Possible DLB (n=1)			
FTLD-TDP 43 (n=1)	Vascular PSP	0/1	0/1	
	Probable CJD (n=1)	0/2	0/2	
P3P (II-2)	PSP (n=1)	0/2	0/2	
CBD (n=1)	Probable CJD (n=1)	0/1	0/1	
Other neurological diseases (n=18)		0/7	0/18	
VD (n=4)	Possible CJD (n=4)	ND	_	
	Probable CJD (n=1)	0/1		
Encephalitis (n=6)	Possible CJD (n=3)	0/1	-	
	Encephalitis (n=2)	ND	_	
Anti-IgLON5 disease (n=1)	Possible sporadic fatal insomnia	0/1	_	
PART (n=1)	Probable CJD	ND	0/40	
	Possible CJD	0/1	- 0/18	
Brain tumor (n=2)	Encephalitis	0/1	_	
Pontine myelinolysis (n=1)	Probable CJD (n=1)	ND	_	
Wernicke encephalopathy (n=1)	Possible CJD	ND	_	
	Probable CJD (n=1)	0/1	_	
Anoxic encephalopathy (n=2)	Autoimmune encephalitis (n=1)	0/1	_	

A-syn RT-QuIC

α-syn RT-QuIC for in CSF samples from patients with negative prion IQ-QuIC

Number of Patients	Clinical Diagnosis	IQ-QuIC	α-Syn RT- QuIC
16	Probable DLB	Negative	Positive (13)
			Negative (3)
6	Possible DLB	Negative	Negative
4	AD LB variant	Negative	Positive
9	Probable AD	Negative	Negative
4	NPH, WE	Negative	Negative

α-syn RT-QuIC assay in CSF samples of individual neuropathologically confirmed Diagnosis

RT-QuIC assay for alpha-Synuclein in CSF and OM samples from patients with clinical diagnosis of probable DLB

Patient	CSF	OM
1	POSITIVE	POSITIVE
2	POSITIVE	POSITIVE
3	POSITIVE	POSITIVE
4	POSITIVE	POSITIVE
5	POSITIVE	POSITIVE
6	POSITIVE	POSITIVE
7	POSITIVE	NEGATIVE
8	POSITIVE	NEGATIVE
9	POSITIVE	NEGATIVE
10	POSITIVE	POSITIVE
11	NEGATIVE	POSITIVE

Algorithm for *in vivo* differential diagnosis between CJD and DLB by prion and α-syn RT-QuIC assays on CSF samples

- RT-QuIC for a-syn on OM samples from patients with DLB is very promising
- ✓ We observed DLB cases RT-QuIC postive in the CSF and negative in OM but also viceversa.
- ✓ Although these data are preliminary, based on alimited numer of cases, it might be speculated that RT-QuIC for a-syn testings in CSF and/or OM might result with a high sensitivity

Creutzfeldt-Jakob Disease Foundation, Inc.