

Malattia di Parkinson: Differenze di genere _{Roma, 4 Maggio 2019}

MARIA TERESA PELLECCHIA UNIVERSITÀ DI SALERNO

Outline

Epidemiologia

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive

Raffaello, Madonna con bambino, 1503

SHORT REPORT

Are men at greater risk for Parkinson's disease than women?

G F Wooten, L J Currie, V E Bovbjerg, J K Lee, J Patrie

Incidence: Meta-analysis including>2500 PD patients from 17 studies

		Population		Number of Mean	age of Age-standardised M:F	
Study location	Year	Age (years)	Size -			
Western populations Southwest Finland ² Poznan, Poland ² Ferrara, Italy ² Manhattan, USA ² Navarra, Spain ² Olmstead, USA ² Turku, Finland ²	1976 1989 1991 1995 1999 1999 1999	All All All All All All All 45 84	402 1 30 187 213 523 95 0 196	The Prevalence of Pa	R E V I E W rkinson's Disease: A S Meta-analysis	Systematic Review and
Tartu, Estonia ⁴ California, USA ⁵ Rotterdam, The Netherlands ⁶ Central Spain ⁷	2000 2003 2003 2004 2004	65 − 84 All All ≥55 ≥65	4341 156 4 77 persc 6839 516(TABLE 4. Prevaler 47 studies	ice of PD by sex a tion (per 100,000)	nd geographic loca-
Cambridge, UK° Aberdeen, UK° Pooled age-adjusted M:F ratio	2004 2006	All All	700 148	Geographic location	Female	Male
Asian populations 29 provinces, China ² Ilan County, Taiwan ² Wakayama, Japan ¹⁰ Pooled age-adjusted M:F ratio	1991 2001 2002	All All All	3 86 75 5 1 08	Asia (21 studies)	306 95% Cl 184, 511	371 95% Cl 219, 629
Total pooled age-adjusted M:F ratio					l ² 98.6	l ² 98.8
M:F, male:female. *Age-adjusted RR from original publi †Mean age calculated crudely from o	ication. age-stratified nu	mber of cases.		Europe/North(17 studie America/Australia	es) 1,267 95% Cl 1,005, 1,595 I ² 82.8	1,535 95% Cl 1,188, 1,983 I ² 83.9
				South America (4 studi	es) 808	1.267
				Movement Disorders, Vol. 29, No. 13, 2014	, 95% Cl 356, 1,832 I ² 88.5	95% CI 583, 2,752 I ² 89.3

Movement disorders

Moisan F, et al. J Neurol Neurosurg Psychiatry 2015;0:1–6. doi:10.1136/jnnp

RESEARCH PAPER

Parkinson disease male-to-female ratios increase with age: French nationwide study and metaanalysis

Frédéric Moisan,¹ Sofiane Kab,^{1,2,3} Fatima Mohamed,^{2,3} Marianne Canonico,^{2,3} Morgane Le Guern,¹ Cécile Quintin,⁴ Laure Carcaillon,⁴ Javier Nicolau,⁵ Nicolas Duport,⁴ Archana Singh-Manoux,^{2,3} Marjorie Boussac-Zarebska,⁵ Alexis Elbaz^{1,2,3}

French Nationwide study including 188.562 persons being treated for PD

Figure 1 Age-specific male-to-female incidence and prevalence ratios of Parkinson's disease (France, 2010). Solid line, observed age-specific male-to-female ratios estimated by modelling prevalence and incidence through Poisson regression. Grey area, 95% Cls of observed male-to-female ratios. Dashed line, linear regression of male-to-female ratios weighted by the inverse of their variance on age (in years, centred at 40 years).

Meta-analysis including 22 studies involving 7616 Men and 6510 women with PD≥40 years

Figure 2 Systematic review of age-specific male-to-female incidence ratios of Parkinson's disease. Circles represent observed male-to-female incidence ratios for each study by age-by-sex strata, estimated by modelling incidence through Poisson regression; their size is proportional to the variance of the male-to-female incidence ratios, and more precise estimates are represented by larger circles. Solid line, linear regression of male-to-female incidence ratios weighted by the inverse of their variance on age (in years, centred at 40 years). Dashed line, 95% Cls of the linear regression.

movement alsoraers

OPEN ACCESS

Moisan F, et al. J Neurol Neurosurg Psychiatry 2015;0:1–6. doi:10.1136/jnnp-2015-3122

Parkinson disease male-to-female ratios increase with age: French nationwide study and metaanalysis

Frédéric Moisan,¹ Sofiane Kab,^{1,2,3} Fatima Mohamed,^{2,3} Marianne Canonico,^{2,3} Morgane Le Guern,¹ Cécile Quintin,⁴ Laure Carcaillon,⁴ Javier Nicolau,⁵ Nicolas Duport,⁴ Archana Singh-Manoux,^{2,3} Marjorie Boussac-Zarebska,⁵ Alexis Elbaz^{1,2,3}

Possible explanations

Genetic contribution to PD is stronger at younger ages. Mendelian and non-mendelian forms have a younger age of onset

RESEARCH PAPER

Non-genetic PD risk or protective factors are differently distributed in men and women and their role increases with age.

Risk factors: Chemicals and toxic factors

Protective factors: Oestrogens

MEN

WOMEN

Review

Sex differences in Parkinson's disease and other movement disorders

Kara M. Smith *, Nabila Dahodwala

Fig. 1. Potential neuromodulatory and neuroprotective mechanisms of estradiol and related compounds. Abbreviations: ER, estrogen receptor; BDNF, brain derived neurotrophic factor; GDNF, glial derived neurotrophic factor; ERK, extra-cellular signal regulated kinase; PI3K, phosphatidylinositol 3 kinase; GSK3β, glycogen synthase kinase 3β. Schematic presentation of estradiol's potential effects in the striatum and substantia nigra. Binding of ER by estradiol activates signal cascades that ultimately decrease apoptosis of neurons.

Experimental Neurology 259 (2014) 44-56

Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson's Disease Incidence

Briana R. De Miranda,^{*,†} Marco Fazzari,^{‡,§,¶} Emily M. Rocha,^{*,†} Sandra Castro,^{*,†} and J. Timothy Greenamyre^{*,†,1}

Toxicol Sci, 2019

Outline

Epid<u>emiologia</u>

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive

Vermeer, La ragazza con l'orecchino di Perla, 1665-1666

Gender differences in Parkinson's disease

Charlotte A Haaxma, Bastiaan R Bloem, George F Borm, Wim J G Oyen, Klaus L Leenders, Silvia Eshuis, Jan Booij, Dean E Dluzen, Martin W I M Horstink 253 drug-naive PD patients (156M/97W)

Body Weight Influences Pharmacokinetics of Levodopa in Parkinson's Disease

*†Mario Zappia, †Lucia Crescibene, *Gennarina Arabia, †Giuseppe Nicoletti, †Angelo Bagalà,
†Loredana Bastone, †Manuela Caracciolo, ‡Simona Bonavita, ‡Alfonso Di Costanzo,
†Massimo Scornaienchi, *†Antonio Gambardella, and *†Aldo Quattrone

	Μ	en (n=91)	Wo	men (n=73)	<i>p</i> value
Age, years	66.0	(8.9)	64.9	(9.0)	NS ^b
Body weight, kg	73.9	(9.4)	65.3	(12.2)	<0.001 ^b
Duration of disease, months	78.1	(59.7)	90.7	(59.4)	NS ^b
Duration of levodopa treatment, months	59.4	(56.1)	71.3	(56.5)	NS ^b
Daily levodopa dosage, mga	450	(100-1350)	500	(100-1390)	NS ^c
UPDRS-ME at baseline ^a	18	(5.0-39.5)	20	(3.5-51.0)	NS ^c
Hoehn-Yahr score ^a	2.5	(1-5)	2.5	(1-5)	NSc
Dyskinetic subjects, n (%)	26	(28.6)	39	(53.4)	0.001 ^d
AUC-l, μmol/l h	4.94	(2.93)	6.45	(3.32)	0.002 ^b

Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

Risk and course of motor complications in a population-based incident Parkinson's disease cohort

Anders Bjornestad ^{a, d, *}, Elin B. Forsaa ^{a, d}, Kenn Freddy Pedersen ^{a, d}, Ole-Bjorn Tysnes ^{b, c}, Jan Petter Larsen ^a, Guido Alves ^{a, d}

Gender

older. In contrast, gender was the most important independent predictor of dyskinesias, with an almost 3-fold increased risk in females. This confirms previous findings of gender as a strong, individual predictor of dyskinesias, proposed to overcome potential protective effects of genetic factors such as dopamine receptor D2 polymorphisms [29]. It has been proposed that the genderdifference in risk of dyskinesias observed in our cohort and other studies could be due to lower body weight in females than males [30]. This is, however, not supported by our findings, suggesting that other factors, e.g. genetic predisposition, may be more important. In addition, we found no association between dyskine-

Dyskinesia occur in women irrespective to body weight

Outline

Epid<u>emiologia</u>

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive future

Goya, Maya desnuda, 1797

Goya, Maya vestida, 1800

ORIGINAL COMMUNICATION

Gender differences in non-motor symptoms in early, drug naïve Parkinson's disease

Marina Picillo · Marianna Amboni · Roberto Erro · Katia Longo · Carmine Vitale · Marcello Moccia · Angela Pierro · Gabriella Santangelo · Anna De Rosa · Giuseppe De Michele · Lucio Santoro · Giuseppe Orefice · Paolo Barone · Maria Teresa Pellecchia

93 Healthy Controls 60/33 M/W

NMS evaluated with NMS-Questionnaire (NMS-Q)

	Total PD patients, n (%)	Female PD patients, n (%)	Male PD patients, n (%)	р
Sex difficulties	23 (11.5)	1 (1.4)	22 (17.5)	0.001
Taste/smelling	41 (20.5)	9 (12.2)	32 (25.4)	0.024

200 PD Patients 126/74 M/W

ORIGINAL COMMUNICATION

Gender differences in non-motor symptoms in early, drug naïve Parkinson's disease

Marina Picillo · Marianna Amboni · Roberto Erro · Katia Longo · Carmine Vitale · Marcello Moccia · Angela Pierro · Gabriella Santangelo · Anna De Rosa · Giuseppe De Michele · Lucio Santoro · Giuseppe Orefice · Paolo Barone · Maria Teresa Pellecchia

of Neurology

Journal

J Neurol (2013) 260:2849-2855

Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

Gender differences in non-motor symptoms in early Parkinson's disease: A 2-years follow-up study on previously untreated patients Marina Picillo^{a,b}, Roberto Erro^c, Marianna Amboni^{b,d}, Katia Longo^d, Carmine Vitale^{d,e}, Marcello Moccia^a, Angela Pierro^b, Sara Scannapieco^b, Gabriella Santangelo^f, Emanuele Spina^a, Giuseppe Orefice^a, Paolo Barone^{b,*}, Maria Teresa Pellecchia^b

Same cohort of PD patients was prospectively followed for 2 years

Aim: to assess the gender-related effect of dopaminergic therapy in early PD

Patients taking meds other than levodopa, dopamine agonists and i-MAO were excluded

	Men	Women	р
NMS-Q, total (baseline)	4.4 (3.2)	3.8 (2.9)	0.3
NMS-Q, total (2-year follow up)	4.5 (2.9)	3.1 (2.2)	0.005
NMS improved	swallowing sadness/blues anxiety	sadness/blues dizziness	NA
NMS worsened	urinary urgency sex drive weight change		NA

Gender effect on non-motor symptoms in Parkinson's disease: are men more at risk?

A. Nicoletti ^a, R. Vasta ^a, G. Mostile ^a, G. Nicoletti ^b, G. Arabia ^c, G. Iliceto ^d, P. Lamberti ^d, R. Marconi ^e, L. Morgante ^f, P. Barone ^g, A. Quattrone ^{b, c}, M. Zappia ^{a, *}

	NMS ar	id PD	multivariate	analysis,	logistic	regression,	stratified	by s	sex.
--	--------	-------	--------------	-----------	----------	-------------	------------	------	------

	Men				Adj OR	95%CI	p-value	Wome	en			Adj OR	95%CI	p-value
	PD (n = 1)	348)	Cont (n =	rols 168)				PD (n = 2)	237)	Contro $(n = 3)$	ols (13)			
	n	%	n	%				n	%	n	%			
Gastrointestinal dist.	194	55.7	31	18.4	6.81	4.26-10.87	< 0.0001	144	60.7	95	30.3	2.84	1.96-4.13	< 0.0001
Urinary dist.	102	29.3	26	15.5	2.52	1.54-4.11	< 0.0001	90	38.0	34	10.9	3.64	2.29-5.80	< 0.0001
Sexual dysfunction ^a	80	41.7	13	26.0	1.96	0.94-4.06	0.07	19	36.5	23	22.5	1.64	0.77-3.52	0.2
Sleep disturbances	210	60.5	49	29.1	3.83	2.57-5.71	< 0.0001	145	61.7	127	40.6	1.86	1.29-2.68	0.0001
Hallucination	42	12.1	0	0	1	/	1	37	15.6	0	0	1	/	1
Cognitive impairment ^b	55	15.8	6	3.6	5.44	2.27-12.98	< 0.0001	37	15.6	14	4.5	2.82	1.43-5.56	< 0.0001
Mild depression ^c	95	27.4	2	1.2	30.88	7.50-126.93	< 0.0001	85	35.9	11	3.5	12.72	6.49-24.95	< 0.0001
Major depression ^d	59	17.0	1	0.60	33.84	4.64-246.61	0.001	56	23.6	5	1.60	14.74	5.69-38.18	< 0.0001

PD women showed a significantly higher frequency of depression and urinary disturbances than parkinsonian men

Non motor fluctuations

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

Gender and non motor fluctuations in Parkinson's disease: A prospective study

Marina Picillo ^a, Raffaele Palladino ^{b, c}, Marcello Moccia ^d, Roberto Erro ^e, Marianna Amboni ^f, Carmine Vitale ^{f, g}, Paolo Barone ^a, Maria Teresa Pellecchia ^{a, *}

• 47 PD (16W/31M) followed for 4 years since diagnosis

• Non motor fluctuations evaluated with WOQ-19

Frequency of motor and non motor wearing off symptoms as reported by the WOQ-19 at 4-year follow up for the whole population and according to gender.

WO symptoms, n (%)	Patients					
	All (47)	Women (16)	Men (31)	р		
Motor						
Tremor	12 (25.5)	4 (25)	8 (25.8)	0.62		
Difficulty in speech	6 (12.8)	3 (18.8)	3 (9.7)	0.32		
Weakness	8 (17)	4 (25)	4 (12.9)	0.25		
Problems with balance	5 (10.6)	3 (18.8)	2 (6.5)	0.2		
Slowness of movements	19 (40.4)	7 (43.8)	12 (38.7)	0.48		
Reduced dexterity	16 (34)	6 (37.5)	10 (32.3)	0.48		
General stiffness	8 (17)	4 (25)	4 (12.9)	0.25		
Muscle cramps	2 (4.3)	1 (6.3)	1 (3.2)	0.57		
Getting out of chair	2 (4.3)	0(0)	2 (6.5)	0.43		
Non Motor						
Anxiety	10 (21.3)	6 (37.5)	4 (12.9)	0.05		
Sweating	0(0)	0(0)	0(0)	1		
Mood changes	9 (19.1)	6 (37.5)	3 (9.7)	0.03		
Numbness	5 (10.6)	3 (18.8)	2 (6.5)	0.20		
Panic attacks	1 (2.1)	1 (6.3)	0(0)	0.34		
Cloudy mind	4 (8.5)	1 (6.3)	3 (9.7)	0.58		
Abdominal discomfort	0(0)	0(0)	0(0)	1		
Feelings of hot/cold	2 (4.3)	1 (6.2)	1 (3.2)	0.57		
Pain	6 (12.8)	5 (31.3)	1 (3.2)	0.01		
Aching	2 (4.3)	2 (12.5)	0(0)	0.11		
WOQ-19 Total score ≥ 2	26 (55.3)	12 (75)	14 (45.2)	0.04		
WOQ-19 Motor score ≥ 1	28 (59.6)	12 (75)	16 (51.6)	0.1		
WOQ-19 Non motor score ≥ 1	18 (38.3)	10 (62.5)	8 (25.8)	0.01		

In conclusion, we conducted a prospective study on early, drugnaïve PD patients followed for 4 years since diagnosis and showed that female gender represents a major risk factor for the development of NMF. No gender differences in medication intake were noticed, supporting the hypothesis that NMF in women remain mostly underestimated and undertreated. From a practical standpoint, our findings prompt the clinician to consider the role of gender in the management of NMF in PD. Short communication

Gender differences in Parkinson's disease depression

Andrew J. Perrin ^{a, c, *}, Ekaterina Nosova ^b, Kim Co ^b, Adam Book ^{b, c}, Oscar Iu ^b, Vanessa Silva ^{b, c}, Christina Thompson ^b, Martin J. McKeown ^c, A. Jon Stoessl ^c, Matthew J. Farrer ^b, Silke Appel-Cresswell ^{c, **}

Landscape of pain in Parkinson's disease: impact of gender differences

Maria Angela Samis Zella^{a,b}, Caroline May^c, Thomas Müller^d, Maike Ahrens^c, Lars Tönges^a, Ralf Gold^a, Katrin Marcus^c and Dirk Woitalla^{a,b}

Neurol Res, 2019

Outline

Epidemiologia

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive

Artemisia Gentileschi, Selfportrait as the allegory of painting, 1638-1639

Longitudinal study of normal cognition in Parkinson disease Pigott et al

- 55 (63%M) cognitively intact PD patients followed for 6 years
- About 50% developed any kind of cognitive impairment by the end of the study

Male gender is a risk factor for cognitive impairment in PD

Predictors of dementia in Parkinson disease

A prospective cohort study

- 80 (51M/29W) PD patients followed for 4.4 (2.0) years
- 27/80 (22M/5W) developed dementia

Table 1 Demographic and m	le 1 Demographic and motor predictors of dementia										
	All patients (N = 80)	Without dementia (n = 53)	With dementia (n = 27)	Odds ratio (90% CI)	p Value						
Age, y	66.2 (10.9)	63.6 (8.0)	70.48 (7.02)	1.14 (1.07-1.21)	0.001						
Sex, M/F	51/29	29/24	22/5	3.64 (1.43-9.26)	0.023						
Duration of disease, baseline, y	5.7 (4.2)	5.4 (4.0)	6.02 (4.11)	1.04 (0.94-1.14)	0.54						
Follow-up duration, y	4.4 (2.0)	4.2 (1.9)	4.70 (2.07)	1.12 (0.92-1.37)	0.34						
Hoehn and Yahr stage	2.4 (0.9)	2.3 (0.9)	2.8 (0.9)	1.53 (0.79-2.94)	0.30						
UPDRS part III score	24.0 (10.7)	24.0 (10.3)	23.8 (12.1)	0.97 (0.92-1.01)	0.21						
Total UPDRS score	38.6 (15.7)	37.6 (14.9)	41.7 (17.8)	0.99 (0.96-1.03)	0.73						

Male gender is a risk factor for development of dementia in PD

Outline

Epidemiologia

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive

Manet, I bar delle Folies Bergere, 1882

Prospective study of plasma urate and risk of Parkinson disease in men and women

Neurology

- Urate is a potent antioxidant
- Higher plasma urate is associated with a lower risk of developing PD and with slower disease progression
- Unanswered question: is gender relevant?

-Data merged from 3 cohort studies including>90.000 men and women

-388 (202M/186W) new incident PD matched with 1.267 controls (446M/821W)

Nurses' Health Study, a	and Cancer Prevent	ion Study II Nutrition coh	ort		r-up Study,			
	Quartile of se	Quartile of serum urate						
	Q1	Q2	QЗ	Q4	p _{trend}			
Men								
Cases/controls, n	58/107	48/120	51/108	45/111	\frown			
Age- and smoking-adjusted RR	1 (ref)	1.00 (0.62, 1.59)	0.72 (0.24, 2.17)	0.59 (0.35, 0.99)	0.018			
Multivariate-adjusted RR	1 (ref)	0.76 (0.21, 2.66)	0.76 (0.20, 2.93)	0.63 (0.35, 1.10)	0.049			
Women								
Cases/controls, n	42/210	48/204	51/198	45/209				
Age- and smoking-adjusted RR	1 (ref)	1.03 (0.40, 2.64)	1.28 (0.80, 2.03)	1.06 (0.66, 1.71)	0.38			
Multivariate-adjusted RR	1 (ref)	0.62 (0.05, 7.26)	1.29 (0.78, 2.12)	1.04 (0.61, 1.78)	0.44			

Outline

Epidemiologia

Sintomi motori e non motori

Cognitività

Biomarcatori

Implicazioni e prospettive

✓ Strategie differenti per identificare i casi prodromici

✓ Migliorare il trattamento

Frida Kahlo, Self-portrait with loose hair, 1947

Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease

Neurology

PPMI cohort: 414 PD (269M/145W) and 188 HC (121M/67W)

NMS comparisons between sex in patients with PD and in healthy controls

	Healthy controls				PD			
NMS	Total (n = 188)	Male (n = 121)	Female (n = 67)	p Value ^a	Total (n = 414)	Male (n = 269)	Female (n = 145)	p Valueª
Sleep disorder								
Epworth Sleepiness Scale	5 (3-8)	5 (3-8)	5 (3-7)	0.74	5 (3-8)	6 (3-8)	5 (3-8)	0.37
RBDSQ	2 (1-4)	2 (1-4)	2 (1-4)	1.00	3 (2-6)	4 (2-6)	3 (2-5)	0.16
Olfactory								
UPSIT	35 (33-37)	35 (32-37)	36 (34-38)	0.28	22 (16-29)	21.5 (15-28)	24 (19-31)	0.02 ^b
Neurobehavioral								
Total anxiety	53 (46-65)	52 (46-64)	54 (45-69)	0.39	61 (51-75)	60 (50-75)	64 (53-76)	0.11
State anxiety	25 (21-33)	25 (21-33)	26 (21-33)	0.87	31 (24-39)	31 (24-38)	31 (25-40)	0.95
Trait anxiety	27 (23-32.5)	26 (24-32)	29 (23-35)	0.45	31 (25-37)	29 (25-36)	32 (27-40)	0.02 ^b
Geriatric depression	1 (0-2)	1 (0-1)	1 (0-2)	1.00	2 (1-3)	2 (1-3)	2 (1-3)	1.00
Cognitive domains ^c								\frown
Global	28 (27-29)	28 (27-29)	28 (27-29)	0.52	28 (26–29)	27 (26-29)	28 (26-29)	0.0008
Memory	51.8 (45.3-56.8)	49.7 (43.3-55.0)	53.7 (48-57.3)	0.0007 ^b	47.3 (41.7–54.0)	46 (40.7-52)	50.7 (43.2-56.3)	0.0003 ^b
Visuospatial	59.5 (53.8-65.2)	60.9 (56.3-66.7)	55.8 (50-62.4)	0.002 ^b	58.7 (52–64.7)	60.3 (55.1-66.7)	55.7 (46.6-60.6)	€0.0001
Working memory-executive	53.6 (49.2–58.8)	53.3 (49.2-58.2)	53.8 (49.7-60.2)	0.43	53.2 (48–57.3)	53.2 (47.7-57.5)	53.3 (48.5-57.2)	0.72
Attention-processing speed	50 (43.2–57)	48.8 (42.5-55)	52 (45-58.3)	0.04 ^b	46 (40-51)	45 (39-49.2)	47 (41.3-52)	0.29
Autonomic								
SCOPA-AUT	5 (3-7)	5 (3-7)	6 (4-9)	0.002 ^b	8 (5–12)	8 (5-12)	9 (6-12)	0.24

Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease

Neurology

B. Men

Neurology® 2015;84:2107-2115

Improving therapeutic management

Gender needs to be considered to better tailor treatment in PD patients

Disparities in medical management

Disparities in Deep Brain Stimulation surgery

Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

Gender and non motor fluctuations in Parkinson's disease: A prospective study

Marina Picillo ^a, Raffaele Palladino ^{b. c}, Marcello Moccia ^d, Roberto Erro ^e, Marianna Amboni ^f, Carmine Vitale ^{f. g}, Paolo Barone ^a, Maria Teresa Pellecchia ^{a. *}

Distribution of women and men with subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease, in publications worldwide and in specific parts of the world.

	Worldwide	North America	Europe	Australia	Asia
No of papers (%)	135	43 (31.9)	76 (56.3)	4 (3.0)	12 (8.9)
No of papers (%) in which gender was specified	119 (88.1)	37 (86.0)	68 (89.5)	3 (75.0)	11 (91.7)
Total no (%) of reported patients	4700	1461 (31.1)	2736 (58.2)	135 (2.9)	368 (7.8)
No (%) of patients with gender reported	3880 (82.6)	1082 (74.1)	2432 (88.9)	77 (57.0)	289 (78.5)
No (%) of men	2445 (63.0)	735 (67.9)	1513 (62.2)	53 (68.8)	144 (49.8)
No (%) of women	1435 (37.0)	347 (32.1)	919 (37.8)	24 (31.2)	145 (50.2)

Allison W. Willis, MD, MSCI Mario Schootman, PhD Nathan Kung, MD Xiao-Yu Wang Joel S. Perlmutter, MD Brad A. Racette, MD

ABSTRACT

Objective: To identify sociodemographic, clinical, and physician/practice factors associated with deep brain stimulation (DBS). DBS is a proven surgical therapy for Parkinson disease (PD), but is recommended only for patients with excellent health, results in significant out-of-pocket costs, and requires substantial physician involvement.

Methods: Retrospective cohort study of more than 657,000 Medicare beneficiaries with PD. Multivariable logistic regression models examined the association between demographic, clinical, socioeconomic satus (SES), and physician/practice factors, and DBS therapy.

Contents lists available at ScienceDirect Parkinsonism and Related Disorders Parkinsonism and Related Disorders 17 (2011) 146–149 Desired House www.elsevier.com/us/astergals/elsevier.com/

Review

Gender distribution of patients with Parkinson's disease treated with subthalamic deep brain stimulation; a review of the 2000–2009 literature *

Gun-Marie Hariz^{a,b,*}, Takeshi Nakajima ^{c,d}, Patricia Limousin ^c, Tom Foltynie ^c, Ludvic Zrinzo ^c, Marjan Jahanshahi ^c, Katarina Hamberg ^e

Sex disparities in health and health care utilization after Parkinson diagnosis: Rethinking PD associated disability

Michelle E. Fullard ^{a, *}, Dylan P. Thibault ^{a, b}, Veronica Todaro ^c, Susan Foster ^c, Lori Katz ^c, Robin Morgan ^c, Drew S. Kern ^{d, j}, Jason M. Schwalb ^{e, j}, Enrique Urrea Mendoza ^{f, j}, Nabila Dahodwala ^{a, j}, Lisa Shu

raikiiisonism Relat Disord, 2018

GENDER MATTERS IN PD

Future studies of gender differences in care needs, care quality, comorbidity related disability, PD progression, and non-clinical factors associated with disability are needed to inform clinical guidelines that may improve quality of life in patients with PD