

La genetica e la clinica: un imprescindibile connubio nella diagnosi delle malattie muscolari complesse

Il punto di vista del genetista

Roma, 1-2 Marzo 2019

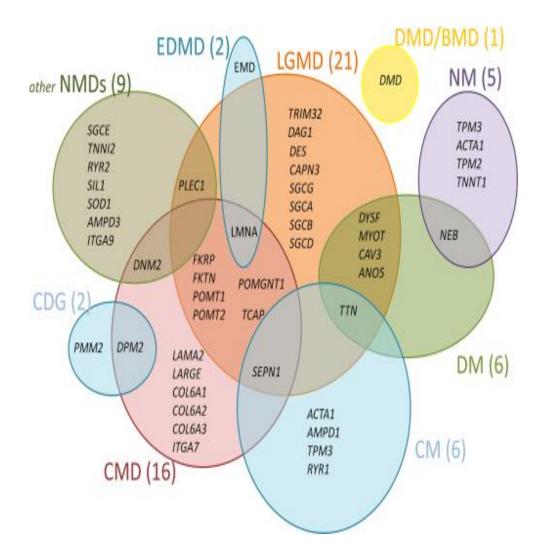
FERNANDA FORTUNATO, MD DIPARTIMENTO DI SCIENZE MEDICHE, DIPARTIMENTO INTERAZIENDALE MATERNO-INFANTILE UO GENETICA MEDICA AOU SANT'ANNA FERRARA

TOPICS

- Rare neurological and neuromuscular diseases (NNMD): concepts
- Genetic diagnosis: brief summary
- New techniques for genetic testing
- Prevention
- Why genetic diagnosis is necessary

NEUROLOGICAL AND NEUROMUSCULAR DISEASES (NNMD)

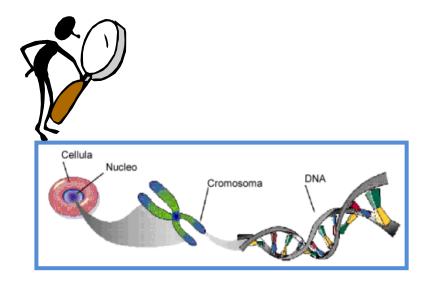
Neurodegenerative (ND) and neuromuscular (NM) diseases are amongst the most frequent classes of rare diseases, affecting life and mobility of 500.000 patients in Europe and millions of their caregivers, family members and employers


Disease	Prevalence	Patients in Europe*	
FTLD	3-10 per 100,000	15,000-50,000	
HD	3 - 7 in 100,000	35,000	
Ataxias	20 in 100,000	200,000	
HSP	2-10 in 100,000	10,000-50,000	
SMA/LMND	5-10 in 100,000	20,000-40,000	
HMN	1 in 2,500	200,000	
CMS	1 - 10 in 1 Mio	500 – 5,000	
CMD	7 - 12 in 100,000	40,000	
D(B)MD	1 in 20,000	25,000	
Dysferlinopathies	1 in 50,000	10,000	
FKRP	0.5 in 100,000	2,000	
МСР	0.5 to 1 in 40,000	6,000-12,000	

*Patients numbers are estimated from numbers of single countries and extrapolated to the EU, or are calculated from heterozygote frequencies

NEUROLOGICAL AND NEUROMUSCULAR DISEASES

NDDs/NMDs are characterized by:


- High genetically heterogeneity: for NMDs more than 500 genes are implicated on disease's pathogenesis
- Mutations occurring in largest genes: these genes sometimes are not fully tested in diagnostic but have been analyzed firstly for mutation in hot spot regions
- Clinical heterogeneity: overlap of symptoms in different NDDs/NMDs diseases
- Unidentified genes

As a result, between 30-80% of patients with NDDs/NMDs remain undiagnosed

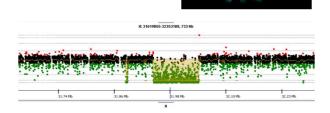
NDDs/NMDs: GENETIC VIEW

- Inheritance: all types
 - Autosomal Dominant
 - Autosomal Recessive
 - > X-linked
 - Matrilinear

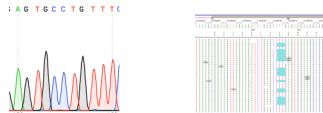
- Functional/anatomic compartments:
 - > All CNS, cerebellum, compartments
 - > Spinal cord
 - Peripheral nerves
 - Skeletal muscle
 - Motoneurons
 - Neuromuscular junctions
 - Mutations: all types
 - Large rearrangements (deletions, duplications)
 - Small mutations (nonsense, missense, frameshifting, splicing)
 - (-100% mutations detected, method dependent)
 - ➤ (all possible mutations identified,

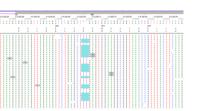
multiple methods often needed)

Specific disease diagnosed


GENETIC DIAGNOSIS: THE DIAGNOSIS ON GENOTYPE Types and Timing

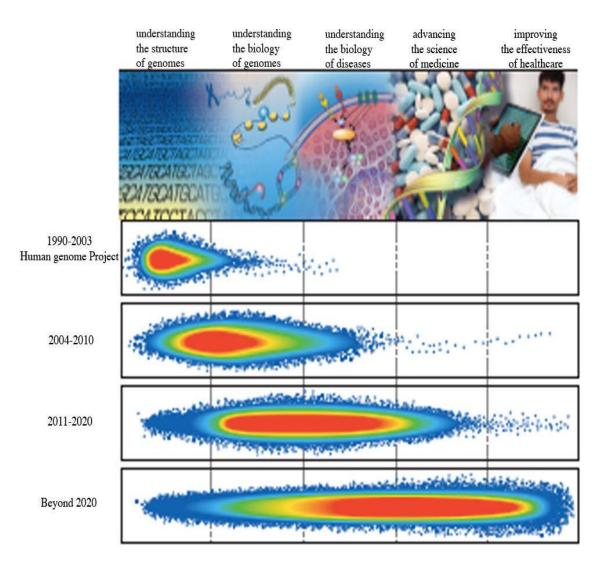
Definition


The analysis of human DNA, RNA, chromosomes in order to detect heritable disease- related genotypes/ mutation for clinical purposes

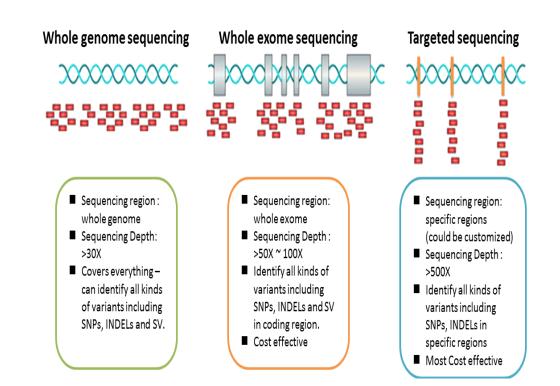


Genome testing karyotype, CGH, Whole genome, **RNAseq**

Gene (single-multi) testing PCR, Sanger sequencing, MLPA, panels, WES, etc



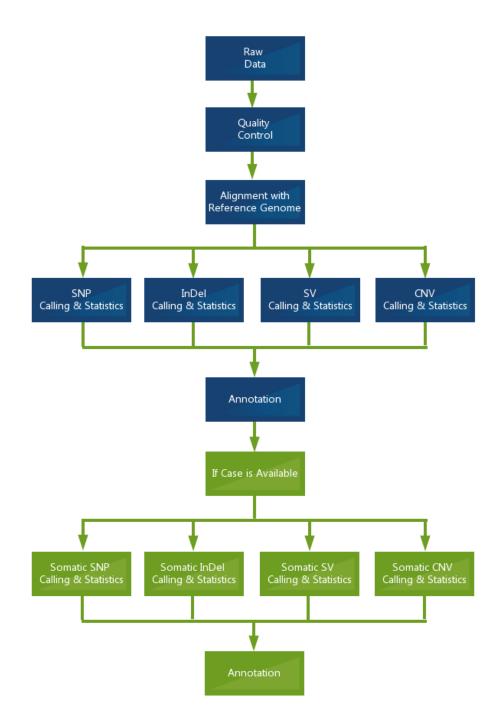
- Prenatal
- foetal tissues/fluids
- **Couple testing**
- \geq Preconceptional and preimplantation or PGD
- **Perinatal** (screening)
- **Newborn screening**
- Postnatal
- **Diagnostic** (disease phenotype)
- **Presymptomatic** (risk of diseased phenotype)
- Predictive (susceptibility for a diseased phenotpe)


GENETIC TESTING MUST HAVE CLINICAL VALIDITY TO BE TRANSLATED INTO CLINICAL PRACTICE

NEXT GENERATION SEQUENCING The NGS revolution

NEXT GENERATION SEQUENCING The NGS revolution

- Gene panel analysis: selected genes known to be associated to a specific disease
- Whole Exome Sequencing (WES): entire set of exons sequencing (~200,000 exons coding for ~20,000 genes and 1.5% of the genome)
- Whole Genome Sequencing (WGS): entire genome (~3 billion base pairs)



HUMAN GENOME: 3,2 Gb

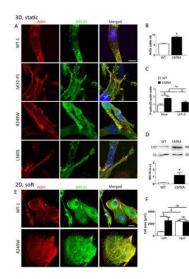
NEXT GENERATION SEQUENCING The NGS revolution

ADVANTAGES :

- Parallel sequencing of <u>millions of</u> <u>nucleotides</u>
- High throughput and <u>many samples</u> <u>contemporary</u> analysed
- High test <u>accuracy</u> ensured by high coverage

NGS CHALLENGING ISSUE 1: output dimension

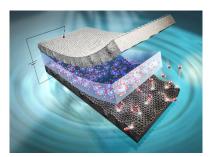
Target	Bases in the target	Median coverage	Bases to be sequenced	Expected variants	Filtering	prioritization	segregation	validatio n
GS	3.100.000.0 00	30x	>120Gb	3.000.000	Very high	Very high	yes	yes
ES	50.000.000	100x	10Gb	30.000	high	high	yes	yes
Large panel	1.500.000	200x	1Gb	1.000	medium	none	yes	IVD
Small panel	50.000	300x	0.05Gb	30	none	none	Yes/no	IVD


INCIDENTAL FINDINGS (BRCA1 and BRCA2, others)

LOTS OF DRY LAB WORKLOAD:

- > Quality filters
- Variant prioritization
- Segregation models
- Variants technical validation (Sanger)

NGS CHALLENGING ISSUE 2: variant interpretations


© 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 2873-2884 doi:10.1242(cs.144807

RESEARCH ARTICLE

Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in *LMNA*-mutated muscle precursors

Anne T. Bertran d^{122,4}, Simindokht Ziati^{12,3,4}, Camille Ehret^{12,3,4}, Hélène Duchemin^{1,23,4}, Kamel Mamchaou^{1,22,4}, Anne Bigot^{1,23,4}, Michèle Mayer⁵, Susana Quijano-Roy⁶, Isabelle Desguerre⁷, Jeanne Lainé^{1,23,4}, Rabah Ben Yaou^{12,3,4}, Gisèle Bonne^{1,23,4,8} and Catherine Coirault^{1,23,4}.

Novel tools to functionally validate the genome variants

Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells Sara M Maffioletti, Mattia F M Gerli, Martina Ragazzi, Sumitava Dastidar, Sara Benedetti, Mariana Loperfido, Thierry VandenDriessche, Marinee K Chuah & Francesco Saverio Tedesco Nature Protocols **10**, 941–958 (2015)

ACMG STANDARDS AND GUIDELINES in Me

Genetics

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD', Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{61,8}, Wayne W. Grody, MD, PhD^{51,61,17}, Madhuri Hegde, PhD¹⁵, Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵, on behalf of the ACMG Laboratory Quality Assurance Committee

Interpretation of sequence variants | RICHARDS et al

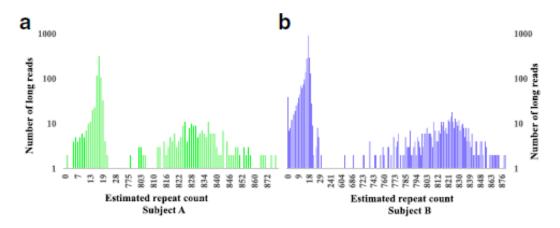
ACMG STANDARDS AND GUIDELINES

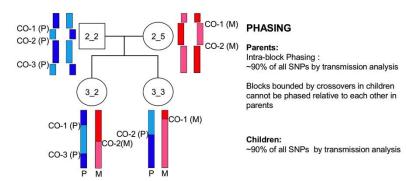
	< Ber	ign → ←		Pathogenic		
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Sillent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PMS Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\rightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cls</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Figure 1 Evidence framework. This chart organizes each of the criteria by the type of evidence as well as the strength of the criteria for a benign (left side) or pathogenic (right side) assertion. Evidence code descriptions can be found in Tables 3 and 4. BS, benign strong; BP, benign supporting; FH, family history; LOF, loss of function; MAF, minor allele frequency; path., pathogenic; PM, pathogenic moderate; PP, pathogenic supporting; PS, pathogenic strong; PVS, pathogenic verv strong.

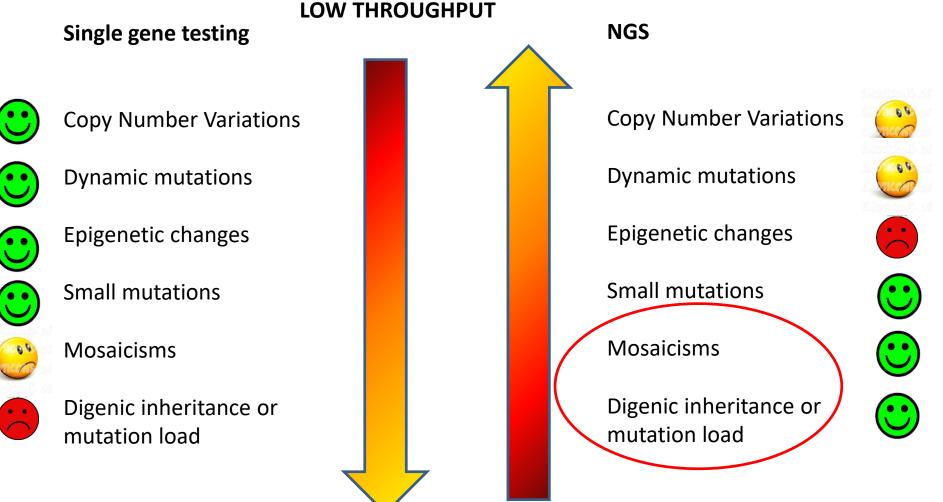
NGS CHALLENGING ISSUE 3: improving CNVs and dynamic mutations detection

Phased sequencing From genotype to haplotype sequencing


-	
Haplotype Phas	sing
Haplotypes	Genotype
ATCCGA	$A \begin{bmatrix} T \\ C \end{bmatrix} \\ G \begin{bmatrix} A \end{bmatrix} \\ C \end{bmatrix} \\ C \\ A \end{bmatrix} \\ C \\ A \end{bmatrix}$
AGACGC	
 High throughput cost eff technology gives genoty 	fective sequencing /pes and not haplotypes.


Possible ATACGA AGACGA phases: AGCCGC ATCCGC

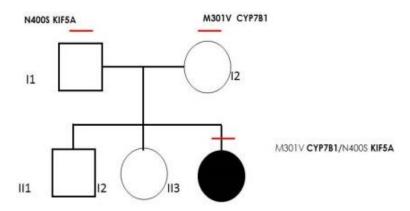
ADVANTAGES:


- Analyze compound heterozygotes
- Measure allele-specific expression
- Identify variant linkage
- Long-reads based sequencing
- CNV detection and epigenetic changes

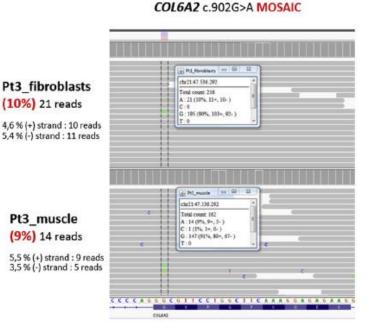
Repeat counting by RepeatHMM in WGS

THE CHANGING SCENARIO OF NMD GENETIC TESTING: mutation detection

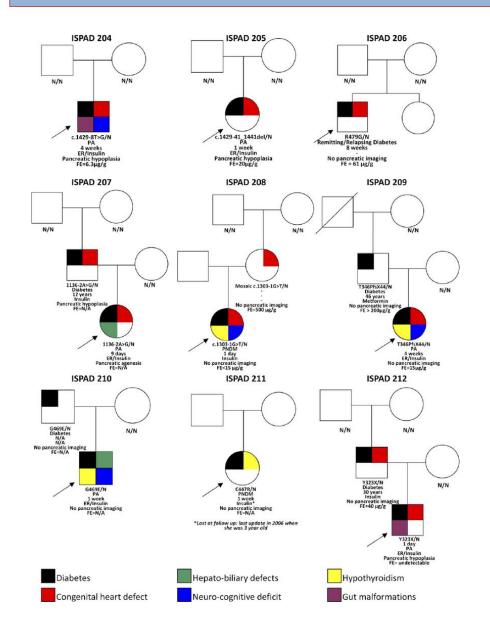
HIGH THROUGHPUT



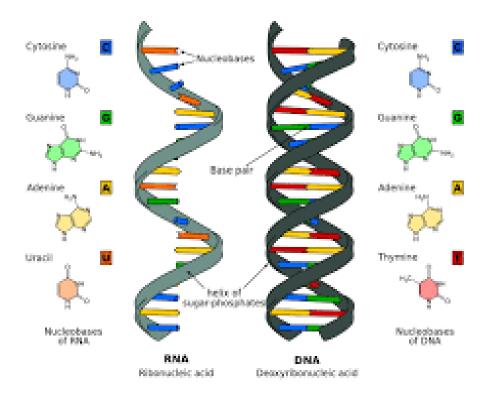
Pharrel William, composer. Affected with hereditary paraplegia

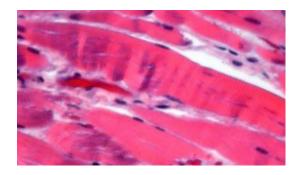

FACING NEW GENETIC PROFILES: digenic inheritance and mosaicism

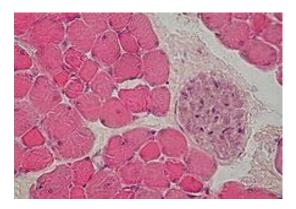
AR Spastic paraplegia (SPG) Digenic inheritance


AR Ulrich Congenital Muscular Dystrophy, COL6A1 Mosaicism

Hereditary paraplegia, HP gene panel : **digenic** inheritance KIF5A/CYP7B1 double heterozygosis


FACING NEW GENETIC PROFILES: the mutation load




MULTIPLE GENE VARIATIONS:

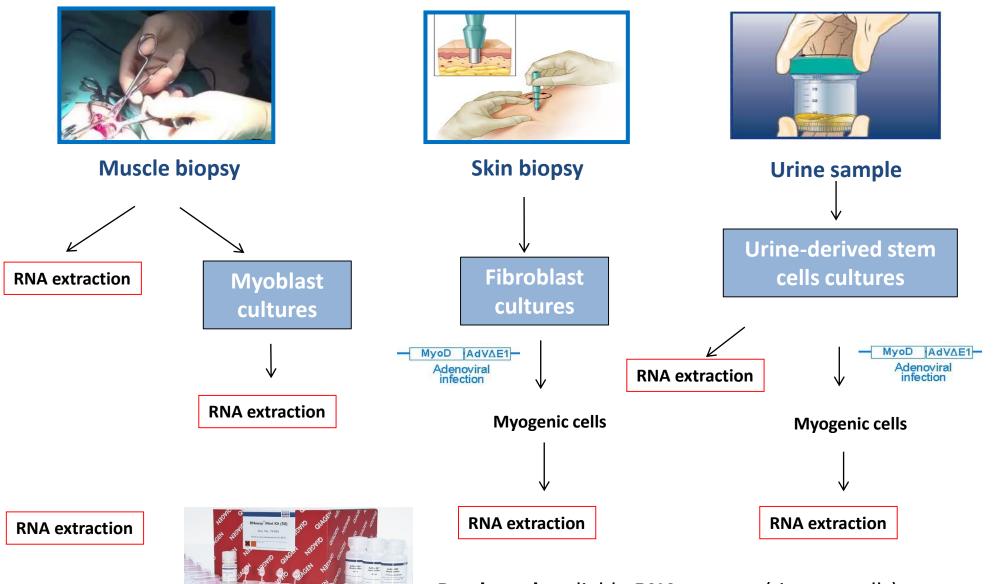
- Major gene (susceptibility)
- Polygenic model (multifactorial)
- Mutation load (mendelian)

NEW TECHNIQUES FOR GENETIC TESTING: RNA-based genetic diagnosis

of Clinical and Translational Neurology

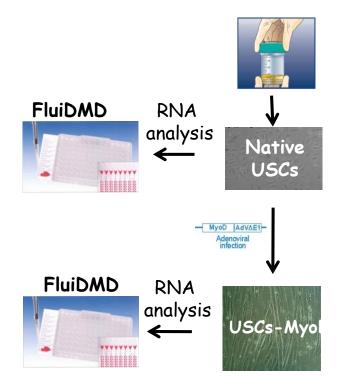
BRIEF COMMUNICATION

RNAseq analysis for the diagnosis of muscular dystrophy

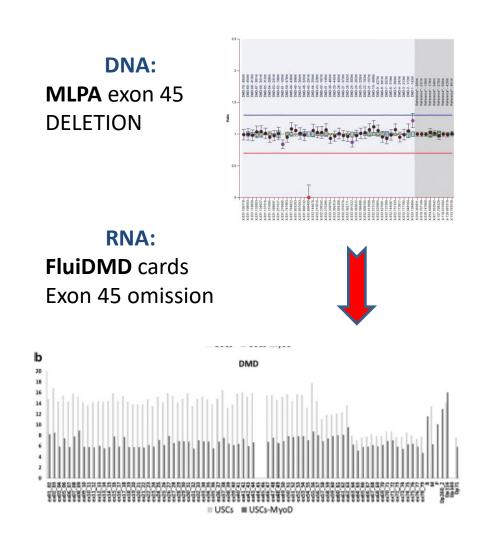

Hernan Gonorazky^{1,2,3,#}, Minggao Liang^{2,4,*}, Beryl Cummings^{5,6,#}, Monkol Lek^{5,6}, Johann Micallef², Cynthia Hawkins⁷, Raveen Basran⁷, Ronald Cohn^{2,3,4}, Michael D. Wilson^{2,4}, Daniel MacArthur^{5,6}, Christian R. Marshall⁷, Peter N. Ray^{2,4,7} & James J. Dowling^{1,2,3,4},

"Division of Neurology Hospital for Girl Children, Toronto, Ortario, Canada MSG AD4 Program of Genetics and Genetic Body, Hospital for Sid Children, Toronto, Ortario, Canada MSG AD4 Department of Paedatrics, University of Toronto, Toronto, Critario, Canada MSG AD4 Organity and Translational Genetics, University of Toronto, Toronto, Ortario, Canada MSG AD4 "Panylat: and Translational Genetics Link Massachustis General Hospital, Bochon, Massachusetts 02114 "Program in Madical and Population Genetics, Binad Institute of Henrard and MT, Cambridge, Massachusetts "Pediatric Laboratory Medicine, Hospital for Sid: Children, Toronto, Ontario, Canada MSG AD4

RNAseq ANALYSIS:


- High throughput (transcriptome)
- RNA molecule might be used to identify all mutation types

NEW TECHNIQUES FOR GENETIC TESTING: RNA-based genetic diagnosis

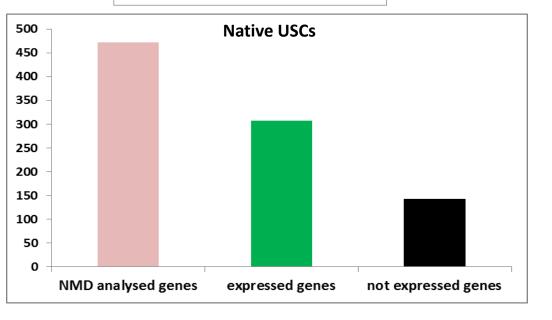

Bottleneck: reliable RNA sources (tissues, cells)

Single gene analysis DMD GENE : FluiDMD card

Duchenne Muscular Dystrophy Myogenic Cells from Urine-Derived Stem Cells Recapitulate the Dystrophin Genotype and Phenotype

Maria Sofia Falzarano,¹ Domenico D'Amario,² Andrea Siracusano,² Massimo Massetti,² Antonio Amodeo,³ Federica La Neve,² Camilla Reina Maroni,² Eugenio Mercuri,⁴ Hana Osman,¹ Chiara Scotton,¹ Annarita Armaroli,¹ Rachele Rossi,¹ Rita Selvatici,¹ Filippo Crea,² and Alessandra Ferlini^{1,5,*}

Human Gene Therapy (2016) 772-83

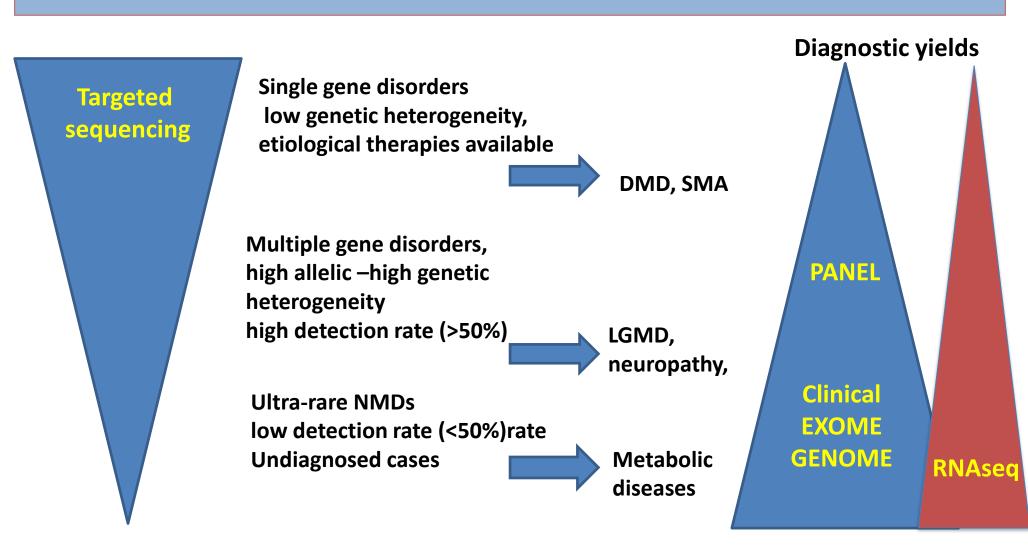

What about other NNMD genes? Testing USCs for expression of NNMD causing genes: RNA seq

RNAseq in wild type, native UCSs

472 NNMD transcripts interrogated

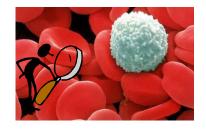
308 expressed genes (FPKM>3)

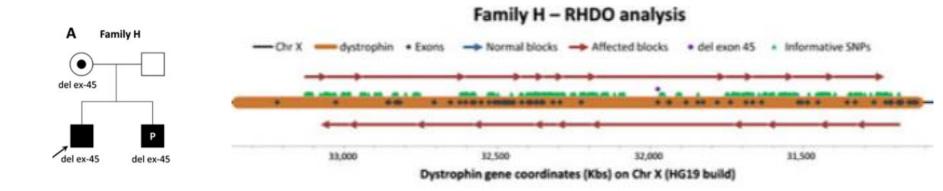
164 genes not expressed



Falzarano et al., submitted

NMD Disease groups	% of NMD expressed genes		
Muscular dystrophies	65		
Congenital muscular dystrophies	79		
Congenital myopathies	38		
Distal myopathies	50		
Hereditary ataxias	53		
Hereditary paraplegias	75		
Hereditary neuropathies	74		
Hereditary cardiomyopathies	44		
Motor neuron diseases	79		
Myotonic syndromes	33		
Other myopathies	54		
Other neurological disorders	74		
Congenital myasthenic syndromes	50		
Metabolic myopathies	89		


SCENARIOS



Diagnostic yields

PREVENTION: NNMDs prenatal diagnosis

- Non invasive prenatal diagnosis (NIPD)
- Early prenatal low invasive procedure on fetal DNA in maternal blood

Non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies by relative haplotype dosage[†]

Michael Parks^{*}, Samantha Court, Siobhan Cleary, Samuel Clokie, Julie Hewitt, Denise Williams, Trevor Cole, Fiona MacDonald, Mike Griffiths and Stephanie Allen

West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, UK

*Correspondence to: Michael Parks. E-mail: Michael.Parks@bwnft.nhs.uk

[†]This study was presented orally at cfDNA 2015 conference [Copenhagen]; ESHG 2015 conference [Glasgow]; CNAPS IX conference [Berlin]; Advancement in Molecular Prenatal Diagnostics conference [Boston].

PREVENTION: preconception carrier screening (PCS)

- Increasingly recognized critical medical component to prevent diseases in offspring to reduce suffering, health care disparity and therapeutic extra cost in future generation
- > Allows couples to consider the most complete range of reproductive options (PGD, PND, etc)

European Journal of Human Genetics (2018) 26:166–175 https://doi.org/10.1038/s41431-017-0056-4	ESHG
ARTICLE	On the
Preconception carrier screening for m a screening offer in a Dutch founder	•
Inge B. Mathijssen ¹ • Kim C.A. Holtkamp ^{2,3} • Cecile P.E. Phillis Lakeman ¹ • Hanne Meijers-Heijboer ^{1,2} • Merel C.	
Received: 29 June 2017 / Revised: 8 October 2017 / Accepted: 13 Nove © European Society of Human Genetics 2018	ember 2017 / Published online: 10 January 2018

 PCS for multiple disorders associated to high knowledge, no major psychological outcomes, no stigmatization

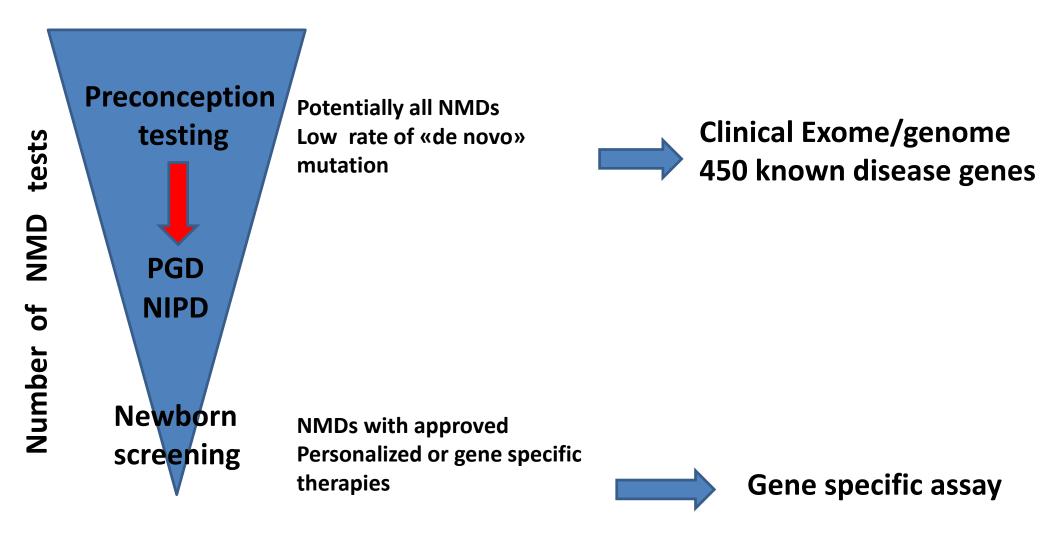
All identified carrier couples made reproductive decisions based on their test results

PREVENTION: PCS in Australia

3 AUSTRALIAN PILOT STUDIES:

- Victoria implement screening for ~ 100 diseases
- preconception carrier offered for 3 years on a user pays basis
- >12,000 individuals have been screened
- > NSW investigate PCS in consanguineous communities
- Western Australia investigate PCS panel for >400 genes

RESEARCH VOLUME 15
Tay Sachs disease in Australia: reduced disease incidence despite stable carrier frequency in Australian Jews
Raelia M Lew, Anne L Proos, Leslie Burnett, Martin Delatycki, Agnes Bankier and Michael J Fietz Med J Aust 2012; 197 (11): 652-654. doi: 10.5694/mja12.11010 Published online: 10 December 2012


Twenty years after the introduction of TSD carrier testing in Australia, there have been fewer than expected Jewish TSD-affected births

No genetic carrier identified through the screening has had a TSD-affected child

Courtesy of Nigel Lang Australia

INTEGRATING PREVENTION AND THERAPY

GENETIC DIAGNOSIS: WHY IS IMPORTANT

FOR THE PATIENT

- 1. Genetic diagnosis
- 2. Clinical diagnosis confirmation (disease-specific clinical follow up, natural history, phenotype-genotype correlation)
- 3. Differential diagnosis (phenocopies)
- 4. Genetic prognosis (mild to severe disease course)
- 5. Gold standard therapies
- 6. Clinical trials (personalized)

FOR THE FAMILY

- 1. recurrent or de novo mutations, mosaicisms (high-low risk of recurrence)
- 2. Carrier detections
- 3. Family prevention and screening
- 4. Prenatal testing

Cooperation Neurology and Genetics!!!!

GENETIC DIAGNOSIS: NOT TO FORGET

Counselling Informed consent and Ethical issues

Genetic testing ESHG guidelines Genetic testing quality assessment schemes

Università di Ferrara fondata nel 1391

www.ospfe.it/medicalgenetics

European Reference Network

for rare or low prevalence complex diseases

Network Neuromuscular Diseases (ERN EURO-NMD)

Member AOU di Ferrara — Italia Azienda Ospedaliero-Universitaria S'Anna - Ferrara

Girolamo Maria Francesco Matteo Savonarola (Ferrara, 1452 – Firenze, 1498)

Emilia Romagna Region Pilot **Omics Project**

