7MRI in Parkinson and Parkinsonisms

Roberto Ceravolo,

Department of Clinical and Experimental Medicine University of Pisa

Flor

7MRI in Parkinson and Parkinsonisms "exploring substantia nigra"

Roberto Ceravolo,

Department of Clinical and Experimental Medicine University of Pisa

Flor

Department of Clinical and Experimental Medicine, University of Pisa

1343

PD: Pathology

PARKINSON' S DISEASE

Organization of the Substantia Nigra

The human SN is a large structure bordered anteriorly by the cerebral peduncle and posteriorly by the red nucleus and superior cerebellar decussation

The *pars reticulata (SNr)* is ventral and composed of g-aminobutyric acid (GABA)ergic neurons that form one of the output nuclei of the basal ganglia along with the internal pallidum. The *pars compacta (SNc)* is dorsal and composed of closely packed dopaminergic neurons which are known to accumulate neuromelanin (nigrosomes)

The SNr contains higher levels of iron than the SNc in normal subjects.

Substantia Nigra of Sommering

- Discovered in 1786 by the french anatomist Félix Vicq d'Azyr (not Soemmerring);
- More than a century after Paul Blocq, Georges Marinesco and Edouard Brissaud alluded to a possible link between this structure and PD;
- 1919 Constantin Trétiakoff: hypothesized that the substantia nigra is the major pathological site in Parkinson's disease.

JOURNAL FÜR PSYCHOLOGIE UND NEUROLOGIE BAND 48, HEFT 1 u. 2, Dezember 1937

Georges Marinesco

Edouard Brissaud

Constantin Trétiakoff

Department of Clinical and Experimental Medicine, University of Pisa

80-year-old healthy patient (A), Parkinson's disease patient(B)

Magnetic Resonance Imaging in Parkinson's Disease

Categories of Substantia Nigra biomarkers

1.5T-3T

Diffusion imaging

functional

connectivity

Lehericy S et al., Mov Disord. 2012

Study	Cases/controls	Field strength	Technique (b-value/Number of directions)	Primary measure	Findings in SN 1.5T-3T
Volumetry					
Adachi et al, 1999	25/36	1.5	DWI (825/3)	Volume	Reduced
Oikawa et al, 2002	22/22	1.5	PD/T2/STIR	Volume	No change
Minati et al, 2007	8/8	1.5	IR-T1	Volume	Reduced lateral > medial
Menke et al, 2009	10/10	3	DESPOT1	Volume	Reduced
Peran et al, 2010	30/22	3	T2 [*]	Volume	No change
Magnetization transfer					0
Eckert et al. 2004	15/20	1.5		MTR	Reduced
Tambasco et al, 2011	22/10			MTR	Reduced
Relaxometry					
Ordridge et al, 1994	7/7	3		R2′	Increased
Michaeli et al, 2007	8/8	4		T1 rho	Increased
				T2rho	Reduced
Martin et al, 2008	26/13	3		R2 [*]	Increased in lateral SNc
Peran et al, 2010	30/22	3		R2 [*]	Increased
Diffusion studies			(b value, Nb directions)		
Yoshikawa et al, 2004	41251	1.5	DTI (800, 6)	MD	
				FA	Reduced
Chan et al, 2007	73/78	1.5	DTI (800, 12)	ADC	No change
,				FA	Reduced
Vaillancourt et al, 2009	14/14	3	DTI (1000, 27)	FA	Reduced
Menke et al, 2009	10/10	3	DTI (1000, 60)	FA	No change
				Connectivity	Reduced (SN-Tha, SN-Pu)
Menke et al, 2010	10/10	3	DTI (1000, 60)	MD	No change
				FA	No change
				Connectivity	Reduced volume of SN
Peran et al, 2010	30/22	3	DTI (1000, 30)	MD	No change
				FA	Reduced

Diffusion tension imaging (DTI) in de novo PD

ARTICLES

Mean fractional anisotropy across patients with Parkinson disease (green) and healthy control subjects (black) in the rostral, middle, and caudal region of the substantia nigra. Error bars represent \pm 1 SD.

Villancourt DE et al., Neurology 2009

Diffusion tension imaging (DTI) in parkinsonian syndromes

VIEWS & REVIEWS

Diffusion tensor imaging in parkinsonian syndromes

A systematic review and meta-analysis

A DTI biomarker for Parkinson's disease?

• Reduction of FA in Substantia Nigra all of 9 studies

• The caudal region of the SN had sensitivity and specificity of 100% for differentiating early, medication naive PD patients from controls – *small number of patients* (Vaillancourt, Neurology 2009)

• No association between disease severity and FA in SN (Vaillancourt, Neurology 2009; Gattellaro, AJNR AM J Neuroradiol 2009)

Cochrane CJ et al., Neurology 2013

regional increase in nigral mean diffusivity in PD
 no difference using a voxel based approach

3: Meta-analysis of 11 studies on nigral FA changes revealed a significant PD induced FA decrease. There was, however, a very large variation in results. After exclusion of five studies with unusual high values of nigral FA in the control group, an acceptable heterogeneity was reached, but there was non-significant disease effect. The small PD related nigral MD changes in conjunction with the negative findings on VBA and meta-analysis limit the usefulness of nigral MD measures as biomarker of Parkinson's disease. The negative results of nigral FA measurements at regional, sub-regional and voxel level in conjunction with the results of the meta-analysis of nigral FA changes question the stability and validity

of this measure as a PD biomarker

Schwarz ST et al., Neuroimage Clin. 2013

Fractional Anisotropy (FA) in PD

Substantia nigra fractional anisotropy is not a diagnostic biomarker of Parkinson's disease: A diagnostic performance study and meta-analysis

10 PD e 10 HS; 3D T2*-weighted gradient echo sequence aligned with an oblique coronal plane

Kwon DH et al., Ann Neurol. 2012

10 PD e 10 HS; 3D T2*-weighted gradient echo sequence aligned with an oblique coronal plane

Kwon DH et al., Ann Neurol. 2012

Kwon DH et al., Ann Neurol. 2012

3D SWI

In plane resolution 312µm Thickness 1.2 mm Total acquisition time 4' 2"

Male, 48 ys

AC NHI AND CONTRACTOR

	HS 13	PD patients 17
Sex M/F	9/4	9/8
Age M(SD) (ys), range *	54.7 (7.9), 40-66	56.0(9.6), 38-70
Disease duration M(SD) (months), range	n.a.	27.2(23.0), 6-96
Hoehn&Yahr M(SD), range	n.a.	1.7(0.4), 1-2
UPDRS II M(SD), range	n.a.	6.9(3.7), 2-13
UPDRS III item M(SD), range	n.a.	17.8(9.0), 9-37
MMSE M(SD), range	30	29.0(0.3), 29-30
*p 0.44		

Cosottini M et al., Radiology 2014

HC	A		No la
	Intra-observer agreement	к =1	1
	Inter-observer agreement	к =0.932	
	Sensitivity/specificity rater 1 %	100/100	
PD	Sensitivity/specificity rater 2 %	100/92,3	NY.
The second	1 Paid		Secol 8

Level I

Level II

Level III

Cosottini M et al., Radiology 2014

Visualization of nigrosome 1 and its loss in PD

Pathoanatomical correlation and in vivo 7 T MRI

Blazejewska A et al, Neurology 2013

(0.35 3 0.35 3 1.00 mm3 voxels

Visualization of nigrosome 1 and its loss in PD

Pathoanatomical correlation and in vivo 7 T MRI

(0.35 3 0.35 3 1.00 mm3 voxels

Blazejewska A et al, Neurology 2013

Patterns of loss of dopaminergic neurons in PD

Brain (1999), 122, 1437-1448

The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson's disease

Iron in Parkinson's disease: cause or consequence?

- Several studies have shown that a selective and significant elevation in iron occurs in the substantia nigra (compacta) of patients with PD.
- Animal, toxic, genetic models support this hypotesis
- Conflicting data exist about iron state in pre-clinical stages
- Multiple actors in the scene: fe3+, fe2+, ferritin, melanin, synuclein, microglia
- Neuromelanin could have both a protective and toxic effect: is abundant in highly vulnerable neurons but could also constitute a Fe-chelator

Primary iron increase, saturation of melanin chelator power, increase in F3+, increase in oxidative state, cell death....

or

Cell death due to other factor, decrease in melanin and melaninchelator power, increase in Fe3+, increase in oxidative state, more cell death

The Substantia Nigra in PD at 7 T

Loss of Nigrosome-1 high signal intensity

Abnormal contours

Volume changes

High diagnostic accuracy

Safety? Extensive controindications? Higher risk for motion artifacts?

- Comparation 7T vs 3T
- Usefulness in differential diagnosis (atypical parkinsonisms)
- Relationship with functional markers of dopaminergic denervation

Limitations and future directions

Safety? Extensive controindications? Higher risk for motion artifacts?

Comparation 7T vs 3T

Relationship with functional markers of dopaminergic denervation

Evaluation in at-risk subjects and dynamics of neurodegenerative changes dicine, University of Pisa

Short-term side-effects of 7T MRI: a single-centre experience

KEY POINTS

• 7T MRI is well tolerated with low incidence of side-effects

the subjects' discomfort during
7T MRI is reduced as the operators' experience increases

 7T MRI is practicable in healthy subjects and patients with neurodegenerative diseases

Cosottini M et al., Eur Radiol 2014

KEY POINTS

- 7T MRI is well tolerated with low incidence of side-effects
- the subjects' discomfort during
 7T MRI is reduced as the operators' experience increases
- 7T MRI is practicable in healthy subjects and patients with neurodegenerative diseases

Cosottini M et al., Eur Radiol 2014

Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study

MAGMA 2015

Safety? Extensive controindications? Higher risk for motion artifacts?

Comparation 7T vs 3T

Relationship with functional markers of dopaminergic denervation

Evaluation in at-risk subjects and dynamics of neurodegenerative changes dicine, University of Pisa

Comparison of 3T and 7T SWAN Imaging of the SN in diagnosing PD

The 'Swallow Tail' Appearance of the Healthy Nigrosome – A New Accurate Test of Parkinson's Disease: A Case-Control and Retrospective Cross-Sectional MRI Study at 3T

Stefan T. Schwarz^{1*}, Mohammed Afzal², Paul S. Morgan³, Nin Bajaj⁴, Penny A. Gowland⁵, Dorothee P. Auer¹

Routinary approach?

Retrospective evaluation of a consecutive 3-T susceptibility-weighted imaging dataset:

<u>86 examinations</u>: 74 controls (cephalalgia, stroke, epilepsy) and 12 patients with PD

- SENSITIVITY 91.6%
- SPECIFICITY 94.6%
- DIAGNOSTIC ACCURACY 94.1%

Higher values could be obtained in scans of higher quality and specifically obtained to assess the SN state

Cosottini M et al., Radiology 2014

Summary of evidences

3T nigrosome MRI evaluation

Both retrospective and prospective approach

Loss of dorsolateral nigral hyperintensity as a marker for PD

Meta-Analysis of Dorsolateral Nigral Hyperintensity on Magnetic Resonance Imaging as a Marker for Parkinson's Disease

Philipp Mahlknecht, MD, PhD,¹ Florian Krismer, MD, PhD,¹ Werner Poewe, MD,^{1,2} and Klaus Seppi, MD^{1,2*}

TABLE 1. Overview of blinded	I studies included in the analys	sis
------------------------------	----------------------------------	-----

Study	Sequence (scan time in minutes)	PD, n	Disease duration, y ^a	UPDRS-III ^a	Hoehn and Yahr stage ^a	HC, n	APD, n ^c	Non-neuro- degenerative parkinsonism, n ^d	Intrarater kappa	Interrater kappa	Nondiagnostic scans, %
3T											
Schwarz et al 2014 ³ (prospective)	HR-SWI (2.4)	10	4.0 ± 3.4	32.5 ± 15.4	1.9 ± 0.9	9			0.82	0.82	0
Schwarz et al 2014 ³	PRESTO (HR-T2*/SWI; 2.6)	9				81 ^b					5.3
Reiter et al 2015 ⁶	SWI (<4.0)	90	5.9 ± 4.3	28.9 ± 11.9	2.3 ± 0.1	35	42		0.869	0.838	12.1
Sung et al 2016 ⁹	MEDIC (7.3)	29	1.7 (1.0-4.7)	14 (9-25)	2 (2-2)	20		20		0.825	0
Noh et al 2015 ¹⁰	MEDIC (4.8)	24	0.8 (0.3-1.0)	13.5 ± 6.2	2 (2-2)	13				0.863	0
Bae et al 2016 ⁸	SWI (NS)	126	Around 2		2 (1-2)	26	22	36	0.93	0.83	13.2
Oh et al 2016 ¹²	3D FLAIR (5.8-8.8)	19			. ,	0		13		0.625	0
7T	. ,										
Blazejewska et al 2013 (prospective) ²	T2* (10.0)	10	3 ± 2	24 ± 13		8					5.3
Kim et al 2016 ⁷	T2* (30)	30			1 and 2 (n = 21) 3 and 4 (n = 9)	26	10		1	1	0
Cosottini et al 2014 (reconsective) ¹¹	SWI (4.0)	17	2.3 ± 1.9	17.8 ± 9.0	1.7 ± 0.4	13			1	0.932	6.3

Results: Of the 16 identified studies, 10 were suitable for analysis, including 364 PD and 231 control cases. The meta-analysis showed an overall sensitivity and specificity of the absence of dorsolateral nigral hyperintensity for PD versus controls of 97.7% and 94.6% (3 and 7 Tesla) and of 94.6% and 94.4% (3 Tesla only). Descriptive analysis among the 4 studies including patients with non-PD parkinsonism showed that dorsolateral nigral hyperintensity was absent in 89.4% of cases with atypical parkinsonian disorders (n = 74), but only in 21.7% of cases with non-neurodegenerative parkinsonism (n = 69). Moreover, in 2 of these studies, the absence of dorsolateral nigral hyperintensity predicted ipsilateral dopamine-transporter deficiency with 87.5% sensitivity and 83.6% specificity.

Mahlknecht P et al., Mov Disord 2017

Safety? Extensive controindications? Higher risk for motion artifacts?

Comparation 7T vs 3T

Usefulness in differential diagnosis (atypical parkinsonisms)

Relationship with functional markers of dopaminergic denervation

Evaluation in at-risk subjects and dynamics of neurodegenerative changes dicine, University of Pisa

Ultra-high field MRI of the SN in atypical parkinsonisms

Lack of differential diagnosis between parkinsonisms with qualitative data

Sparing of SN UHF organization in CBD: heterogeneous disease?

Frosini D et al., J Neural Transm 2016

Dopamine transporter SPECT in corticobasal degeneration

Journal of the Neurological Sciences 216 (2003) 127-134

Neurological Sciences

Pathological heterogeneity of clinically diagnosed corticobasal degeneration

M. Doran, D.G. du Plessis, T.P. Enevoldson, N.A. Fletcher, E. Ghadiali, A.J. Larner*

Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Lower Lane, Fazakerley, Liverpool, L9 7LJ, UK Received 6 September 2002; received in revised form 18 July 2003; accepted 24 July 2003

Abstract

Two patients fulfilling suggested clinical diagnostic criteria for corticobasal degeneration (CBD) are presented, who were found at postmortem to have alternative pathological diagnoses not suspected during life, namely, Alzheimer's disease and Pick's disease, respectively. The nosological position of these cases is considered in light of a literature review of previous reports of clinically diagnosed corticobasal degeneration with atypical (not corticobasal degeneration) pathology. Since such phenocopies may be common, we suggest that all clinically diagnosed cases of corticobasal degeneration should initially be labelled as "corticobasal degeneration syndrome" (CBDS) to emphasize that this is a diagnosis based on clinical phenotype, with the term corticobasal degeneration being reserved for the specific neuropathological phenotype, which itself may have a variety of clinical presentations. © 2003 Elsevier B.V. All rights reserved.

Normal Dopamine Transporter Single Photon-Emission CT Scan in Corticobasal Degeneration

Movement Disorders Vol. 23, No. 16, 2008, pp. 2420–2431 © 2008 Movement Disorder Society

Dopamine transporter SPECT in corticobasal degeneration

Dopamine Transporter SPECT Imaging in Corticobasal Syndrome

Roberto Cilia¹, Carlo Rossi², Daniela Frosini², Duccio Volterrani³, Chiara Siri¹, Cristina Pagni², Riccardo Benti⁴, Gianni Pezzoli¹, Ubaldo Bonuccelli^{2,5}, Angelo Antonini^{1,6,7}, Roberto Ceravolo²*

CBSn follow-up

Case 1

Ceravolo R et al., Parkinsonism Relat Disord. 2013

Substantia Nigra changes in normal ageing, PD and PSP

AGEING AND PARKINSON'S DISEASE: SUBSTANTIA NIGRA REGIONAL SELECTIVITY

by JULIAN M. FEARNLEY and ANDREW J. LEES

(From the National Hospital, Queen Square, London, UK)

9.4 T MR microscopy of the substantia nigra with pathological validation in controls and disease

LA Massey^{a,b,*}, MA Miranda^c, O Al-Helli^{a,e}, HG Parkes^e, JS Thornton^f, P-W So^g, MJ White^f, L Mancini^f, C Strand^b, J Holton^b, AJ Lees^{a,b,d}, T Revesz^b, TA Yousry^{e,f}

ABSTRACT

Background: The anatomy of the substantia nigra on conventional MRI is controversial. Even using histological techniques it is difficult to delineate with certainty from surrounding structures. We sought to define the anatomy of the SN using high field spin-echo MRI of pathological material in which we could study the anatomy in detail to corroborate our MRI findings in controls and Parkinson's disease and progressive supranuclear palsy. *Methods:* 23 brains were selected from the Queen Square Brain Bank (10 controls, 8 progressive supranuclear palsy, 5 Parkinson's disease) and imaged using high field 9.4 Tesla spin-echo MRI. Subsequently brains were cut and stained with Luxol fast blue, Perls stain, and immunohistochemistry for substance P and calbindin. Once the anatomy was defined on histology the dimensions and volume of the substantia nigra were determined on high field magnetic resonance images.

Results: The anterior border of the substantia nigra was defined by the crus cerebri. In the medial half it was less distinct due to the deposition of iron and the interdigitation of white matter and the substantia nigra. The posterior border was flanked by white matter bridging the red nucleus and substantia nigra and seen as hypointense on spin-echo magnetic resonance images. Within the substantia nigra high signal structures corresponded to confirmed nigrosomes. These were still evident in Parkinson's disease but not in progressive supranuclear palsy. The volume and dimensions of the substantia nigra were similar in Parkinson's disease and controls, but reduced in progressive supranuclear palsy.

Conclusions: We present a histologically validated anatomical description of the substantia nigra on high field spin-echo high resolution magnetic resonance images and were able to delineate all five nigrosomes. In accordance with the pathological literature we did not observe changes in the nigrosome structure as manifest by volume or signal characteristics within the substantia nigra in Parkinson's disease whereas in progressive supranuclear palsy there was microarchitectural destruction.

Massey LA et al., Neuroimage 2017

Loss of dorsolateral nigral hyperintensity in PD, MSA and PSP on 7T MRI

Kim JM et al., Parkinsonism Relat Disord. 2016

High field MRI of the SN in atypical parkinsonisms

42 Healthy controls 104 Parkinson's Disease 22 Multiple System Atrophy 22 Progressive Supranuclear Palsy

Reiter E et al, Mov Disord 2015

EMÆD

Safety? Extensive controindications? Higher risk for motion artifacts?

Comparation 7T vs 3T

Relationship with functional markers of dopaminergic denervation

Evaluation in at-risk subjects and dynamics of neurodegenerative changes dicine, University of Pisa

Imaging dopamine terminal function

DAT TRACER BINDING = Density of DAergic terminals

¹²³I-ioflupane SPECT images

Healthy Control

Parkinson's disease

Neuropathological correlates of dopaminergic imaging in Alzheimer's disease and Lewy body dementias Colloby et al.

Tracer uptake was associated with nigral dopaminergic neuronal density, but not with a-synuclein , tau or amyloid b burden

Correlation of Striatal Dopamine Transporter Imaging With Post Mortem Substantia Nigra Cell Counts

Julia Kraemmer, MD,¹ Gabor G. Kovacs, MD,² Laura Perju-Dumbrava, MD,¹ Susanne Pirker, MD,¹ Tatiana Traub-Weidinger, MD,³ and Walter Pirker, MD¹*

AJNR 2015

Nigrosome 1 Detection at 3T MRI for the Diagnosis of Early-Stage Idiopathic Parkinson Disease: Assessment of Diagnostic Accuracy and Agreement on Imaging Asymmetry and Clinical Laterality

18F-FP-CIT & 3T MRI

Y. Noh, Y.H. Sung, J. Lee, and ^(D)E.Y. Kim

24 PD 13 HC

Sensitivity, specificity, and accuracy of the nigrosome 1 detection at 3T MR imaging were 100%, 84.6%, and 94.6%, respectively.

In PD the agreement of asymmetry between clinical laterality and nigrosome 1 detection was good (0.724). The degree of the 18F-FP-CIT PET binding showed fair agreement (0.235) with clinical laterality.

-18F-FP-CIT PET shows nigrostriatal functional changes that are earlier than structural changes observed in the nigrosome 1 detection ???? -support the dying-back phenomenon ????

Loss of Nigral Hyperintensity on 3 Tesla MRI of Parkinsonism: Comparison With ¹²³I-FP-CIT SPECT

Bae et al, Mov Dis 2016

Safety? Extensive controindications? Higher risk for motion artifacts?

Comparation 7T vs 3T

Relationship with functional markers of dopaminergic denervation

Evaluation in at-risk subjects and dynamics of neurodegenerative changes income and the second secon

MDS Research Criteria for prodromal PD

PRECLINICAL PARKINSONISM

Neurodegenerative process has begun but no sign or symptoms are present.

PRODROMAL PARKINSONISM

Early symptoms or signs of neurodegeneration are present, but classic clinical diagnosis based on motor features is not yet possible.

MOTOR PHASE

CLINICAL PARKINSONISM

Full parkinsonism is present (as defined in accordance to current MDS diagnostic criteria)

Berg D et al, Mov Disord. 2015

Biomarkers of parkinsonism: CLINICAL MARKERS

iRBD

REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming (BOEVE BF, Brain 2007; ICSD2).

iRBD as a prodromal marker

- HIGH SPECIFICITY

80% of PSG-proven RBD individuals develop a neurodegenerative outcome (synucleinopathies);

-MODEST SENSITIVITY

Only one-third to one-half of patients with early PD have RBD

-Lead Time relatively long

The median estimate of time between RBD and neurodegenerative disease onset is 13 years

Multifactorial

Mendelian

Autosomal dominant PD genes

PARK8 - LRRK2 - Dardarin

Only 6 mutations with confirmed pathogenicity and familial recurrence (high risk)

1-2% of sporadic PD

G2019S mutation

angle 5-8% of familial PD

Founder effect among Ashkenazi Jews and North African Arabs

- variable presentation, onset 3rd-8th decade
- indistinguishable from idiopathic PD also for non-motor signs, but:
 - less hyposmia
 - less cognitive impairment and dementia
 - less frequent occurrence of lewy body pathology
- same prevalence for men and women (no sex effect)
- reduced penetrance: 25-30% by age 80 years
- The risk of PD for LRRK2 mutation carriers varies with the age: 28% at age 59 years, 51% at 69 years, and 74% at 79 years;

Gaig, PLoS one 2014; Saunders-Pullmann, Ann Clin Trans Neurol 2014; Srivatsal, Mov Disord 2015; Marder, Neurology 2015; Kalia Jama Neurol 2015; Gan Or, Park Relat Disord 2015; Infante et al, Neurobiol Ag 2015

LRKK2 mutation carriers: a family report

All G2019SLRKK2 mutation carriers (symptomatic and asymptomatic) underwent:

123I-FP-CIT SPECT imaging; 7T MRI (SWAN sequences).

Ceravolo R et al, Mov Disord 2015

LRKK2 mutation carriers: a family report

	Right nigrosome	Left nigrosome	Right ¹²³ I-FP-CIT uptake	Left ¹²³ I-FP-CIT uptake
A) Asymptomatic LRRK2 mutation carrier	Abnormal	Normal	Abnormal	Abnormal
B) Asymptomatic LRRK2 mutation carrier	Normal	Normal	Abnormal	Abnormal
C) Symptomatic LRRK2 carrier	Abnormal	Abnormal	Abnormal	Abnormal

Ceravolo R et al, Mov Disord 2015

PSG-proven iRBD individuals: study protocol

14 iRBD patients

Inclusion criteria:

PSG-proven RBD;DaTSCAN within the last 3 months.

28 PD patients

Inclusion criteria:

MDS diagnostic criteria
for PD are fulfilled;
DaTSCAN compatible
with nigro-striatal
degeneration.

15 healthy controls

Inclusion criteria:

 healthy subjects with no parkinsonian or dementia signs and without sleep disorders.

Clinical examination in order to:

- Verify the fulfilment of inclusion/exclusion criteria;
- Rule out the presence of contraindications to ultra-high field MRI;
- Administer standardised rating scales (UPDRS III, MMSE, NMSS, RBDSS).

Ultra-high field MRI (SWAN sequences)

ALINE DICULTATIS

Unpublished data

PSG-proven iRBD individuals: results

Unpublished data

In summary

Open questions and issues

1) The MRI SN change is highly specific for degenerative parkinsonism and it is present in about 2/3 of high-risk subjects (LRRK2 carriers, RBD)

2) Key points to be done:

- to complete the follow-up to assess the clinical conversion in such subjects
- to increase the population study and replicate the results

3) The discrepancy between the SN MRI change and DAT imaging is worth to be furtherly investigated

- is DAT imaging more sensitive by showing compensatory mechanisms?
- is MRI change not sensitive enough, depending on the iron deposition?

DAT early compensatory mechanism

DAT TRACER BINDING = Density of DAergic terminals

In early compensatory mechanism: $\sqrt{DAT} \uparrow DA$ turnover- \uparrow synaptic DA

When disease progresses: \downarrow DAT- \uparrow DA turnover-greater oscillations in synaptic DA-motor complications

Retrograde Axonal Degeneration in Parkinson Disease

Patricia Tagliaferro^a and Robert E. Burke^{a,b,*}

Journal of Parkinson's Disease 6 (2016) 1-15

Early Synaptic Dysfunction in Parkinson's Disease: Insights From Animal Models

Tommaso Schirinzi, MD,¹ Graziella Madeo, MD,¹ Giuseppina Martella, PhD,^{1,2} Marta Maltese, PhD,¹ Barbara Picconi, PhD,² Paolo Calabresi, MD,^{2,3} and Antonio Pisani, MD, PhD^{1,2*}

Movement Disorders, Vol. 31, No. 6, 2016

Elevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy study

Reproducibility Measurement of Glutathione, GABA, and Glutamate: Towards In Vivo Neurochemical Profiling of Multiple Sclerosis With MR Spectroscopy at 7T Brain

Brain glutamate in anorexia nervosa: a magnetic resonance spectroscopy case control study at 7 Tesla

ACKNOWLEDGMENTS

Università di Pisa Ubaldo Bonuccelli Daniela Frosini Valentina Nicoletti Elisa Unti Martina Giuntini

Fondazione IMAGO 7 *Mirco Cosottini Mauro Costagli Michela Tosetti*

Medicina Nucleare Università di Pisa Duccio Volterrani